
BRECS: Enhanced Binary Representation of Word
Embeddings via Cosine Similarity

Rajdeep Sarkar a,*, Sourav Dutta b and John McCrae c

aYahoo Research
bHuawei Ireland Research Centre

cData Science Institute, University of Galway

Abstract. Word representations like GloVe and Word2Vec encapsu-
late semantic and syntactic attributes and constitute the fundamental
building block in diverse Natural Language Processing (NLP) appli-
cations. Such vector embeddings are typically stored in float32 for-
mat, and for a substantial vocabulary size, they impose considerable
memory and computational demands due to the resource-intensive
float32 operations. Thus, representing words via binary embeddings
has emerged as a promising but challenging solution.

In this paper, we introduce BRECS, an autoencoder-based Siamese
framework for the generation of enhanced binary word embeddings
(from the original embeddings). We propose the use of the novel Bi-
nary Cosine Similarity (BCS) regularisation in BRECS, which en-
ables it to learn the semantics and structure of the vector space
spanned by the original word embeddings, leading to better binary
representation generation. We further show that our framework is tai-
lored with independent parameters within the various components,
thereby providing it with better learning capability. Extensive exper-
iments across multiple datasets and tasks demonstrate the effective-
ness of BRECS, compared to existing baselines for static and contex-
tual binary word embedding generation. The source code is available
at https://github.com/rajbsk/brecs.

1 Introduction

Word embeddings are continuous vector representations of words
sourced from a vocabulary V . These representations are constructed
from the association between words from a large text corpus based
on the distributional hypothesis [13]. Word embeddings have been
shown to encapsulate both semantic and syntactic linguistic knowl-
edge and have found widespread utility in the domain of Natural
Language Processing (NLP). Applications of word embeddings form
the fundamental basis for various applications, including language
models, question-answering, machine translation, and dialogue sys-
tems among others. The construction process for word embedding
involves techniques like generating word vectors such that the rep-
resentations of co-occurring words are closer together [20] or by
performing matrix factorisation of the co-occurrence statistics ma-
trix [24]. These methodologies generate vector space depicting se-
mantic similarity wherein words with similar meanings or contextual
usage exhibit shorter distances relative to dissimilar words.

∗ Corresponding Author. Work done when the author was a PhD student at
the University of Galway. Email: rajdeep.sarkar@yahooinc.com.

Given that each word embedding is represented by n-dimensional
float32 vector (wherein n is typically in the order of 100s), the stor-
age requirements for such word embeddings can be substantially
high. To illustrate, consider a vocabulary set comprising 3 million
words, each associated with 300-dimensional word vectors (i.e., 300
float32 real numbers per word). Storing such embeddings neces-
sitates approximately 3.6 GB of storage space, posing challenges
for its portability. Moreover, when deployed on resource-constrained
embedded devices like mobile phones, word embeddings with their
high memory demands and the computational burden of floating-
point arithmetic operations can impede efficient performance. A
commonly employed strategy for reducing the memory footprint of
embeddings involves employing techniques like Principal Compo-
nent Analysis (PCA) or Locality Sensitive Hashing (LSH). However,
recent studies have demonstrated that embeddings resulting from di-
mensionality reduction exhibit poor performances [32].

To alleviate the above problem, methods for deriving binary word
embeddings from continuous word embeddings [33, 23, 21, 29] have
been proposed, termed as Binary Quantization Learning (BQL). Bi-
nary vectors offer the advantage of reduced computational demands,
as operations are performed using inexpensive binary operations
rather than floating-point arithmetic. Additionally, each element in
a binary vector consumes only one bit of storage, thus significantly
decreasing the overall memory footprint. Consider, 3 million words
each represented as a 300-dimensional binary vector would thus re-
quire a mere 112.5 MB – providing a storage reduction of 32 times
(as compared to 3.6 GB). Further, such binary representation has en-
abled the development of large-scale vector database search for effi-
cient retrieval 1.

Semantic similarity between binary word representations is then
computed using the Hamming distance [5]. Tissier et al. [33] in-
troduced the utilisation of an autoencoder architecture for the word
embedding binarisation task. The autoencoder comprises an encoder
network responsible for transforming continuous embeddings into
binary embeddings and a decoder network for the reverse conversion
from binary to continuous embeddings, minimising the reconstruc-
tion loss. It uses the Heaviside step function for the conversion of en-
coder representations into binary space. Due to the non-differentiable
nature of this function, the same parameters were shared between the
encoder and decoder, thereby limiting the learning capability of the
network. Navali et al. [23] extended the aforementioned work by in-
corporating semantic preservation regularisation into the network to
1 blog.vespa.ai/billion-scale-knn & github.com/cohere-ai/BinaryVectorDB

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240966

3995

enhance the generation of binary embeddings. The semantic preser-
vation loss, a variant of contrastive loss, minimises the Hamming
distance between binary embeddings for pairs of similar words and
increases it for dissimilar word pairs. Nonetheless, it is important
to highlight that the innovative semantic preservation regularisation
technique relies on cosine similarity to assess if one pair of words is
more similar than another pair of words, as opposed to directly ap-
proximating cosine similarity, leading to potentially suboptimal in-
formation capture.

In this paper, we present Binary Representation lEarning via Co-
sine Similarity (BRECS), a Siamese autoencoder-based binary word
embedding framework to address the aforementioned challenges as-
sociated with existing methodologies. We introduce a novel Binary
Cosine Similarity (BCS) loss function, that enables the network to di-
rectly approximate the cosine similarity between continuous embed-
dings and binary embeddings, thereby enabling the generated binary
representation to efficiently capture semantic information from the
real-valued word embedding vector space. Specifically, we employ
the BCS function to propose a novel information capture mechanism
that leverages continuous vector contexts for learning rich binary
word embeddings. Further, we argue that the parameters of the en-
coder and decoder in an autoencoder architecture should be disentan-
gled for better performance, as they inherently cater to distinct learn-
ing tasks. To tackle the issue of non-differentiability in this setup, we
leverage Straight Through Estimator (STE) [4] to approximate the
gradients of the non-differentiable Heaviside step function.

Our contributions can be summarised as follows:

• BRECS, an autoencoder-based binary word embedding framework
for generating high-quality binary word embeddings;

• Novel BCS loss function for approximating the cosine similarity
of continuous word embeddings within the binary representations
to better capture semantic information;

• Use of STE function to decouple the encoder and decoder learning
parameters, thus increasing the model performance; and,

• Extensive experiments on multiple benchmark tasks and datasets
demonstrating performance improvement in BRECS over existing
methods, for both static and dynamic embeddings.

2 Related Work

Word embeddings are the basic components of many Natural Lan-
guage Processing (NLP) applications. Owing to the large vocabulary
size, the memory footprint of these embeddings can render them ex-
pensive for application on small devices. In fact, current large models
like XLM-RXXL have a vocabulary size of 250K and produce vector
representations with 4096 dimensions [26] – making it infeasible for
most scenarios. Recent studies have investigated techniques such as
PCA for compressing the memory footprint of word embeddings [25]
However, these embeddings are plagued by two significant issues.
Firstly, the computations involved still operate at the precision of 32-
bit floating-point numbers, leading to increased computational costs.
Secondly, Thakur et al. [32] demonstrated that such embeddings ex-
hibit suboptimal performance in various tasks compared to binary
embeddings. Binary embeddings address this issue as they occupy
less size in memory and faster bit operations.

Shen et al. [28] proposed NASH, a neural network architecture for
fast retrieval of documents using binary encodings. Charikar [7] pro-
posed Locality Sensitive Hashing that utilises random projections to
generate binary embeddings that tend to approximate the cosine simi-
larity. However, Xu et al. [34] pointed out that these methods are sub-
optimal in preserving the semantic information. Thereafter, Faruqui

et al. [8] proposed to create binary embeddings preserving semantics
similarities by increasing the vector size to create sparse vectors and
then applying a binarisation function to these embeddings. Although
innovative, the increased size of the embeddings fails to fit in CPU
registers [33]. The Fasttext embedding by Joulin et al. [16] binarizes
embeddings through clustering and concatenating the binary repre-
sentations of the “k” closest centroids for each word. However, it is
important to note that the resulting binary vectors are specialised and
not suitable for general-purpose tasks, as they are primarily designed
for document classification.

Tissier et al. [33] proposed an autoencoder architecture for trans-
forming continuous word embeddings into binary embeddings.
Navali et al. [23] built upon the prior autoencoder architecture and
added a semantic preservation regularisation loss to capture the re-
lationship between similar/dissimilar pairs of words in the binary
space. Cohere2 contextually embed texts using their transformer-
based proprietary models for similarity and classification tasks. Fur-
ther, hashing-based techniques coupled with autoencoder architec-
ture have been proposed recently for retrieval tasks [10]. We observe
BRECS to outperform previous methods on two benchmark tasks
suggested by [15] on multiple datasets as showcased in Section 5.

3 BRECS Framework

In this section, we formally introduce the problem statement and dis-
cuss the architecture and working of our proposed Binary Represen-
tation Learning via Cosine Similarity (BRECS) framework. We ini-
tially introduce our novel Binary Cosine Similarity (BCS) function
on the binary representation of words. Subsequently, in Section 3.3
we present the autoencoder architecture of BRECS with Straight
Through Estimator (STE) for generating binary embedding, along
with the use of BCS for semantic information capture in Section 3.5.

3.1 Problem Definition

Given a vocabulary V of words, where each word wi ∈ V is repre-
sented by an m-dimensional real-valued vector xi ∈ R

m, the task
is to generate an n-dimensional binary representation bi ∈ {0, 1}n
for wi that can effectively capture the semantic knowledge from the
continuous word embedding xi.

3.2 Binary Cosine Similarity (BCS) Function

Cosine similarity between two word embeddings presents the de-
facto measure to enumerate the semantic relatedness between the
words. Semantically similar words are mapped close to each other
in the embedding space and depict high cosine similarity (and vice-
versa for dissimilar words). The Continuous Cosine Similarity (CCS)
of two real-valued word embedding vectors is,

CCS(xw1 , xw2) =
�xw1 · �xw2

|| �xw1 || × || �xw2 ||
(1)

, where · denotes vector dot product and ||�x|| denotes the norm, with
−1 ≤ CCS(xw1 , xw2) ≤ 1.

BRECS aims to capture the cosine similarity between two word
vectors by learning binary word embeddings capable of approximat-
ing this similarity measure via the proposed Binary Cosine Similar-
ity (BCS) function.

2 www.cohere.com

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity3996

Let w1 and w2 be two words represented by real-valued m-
dimensional vectors xw1 and xw2 (i.e., original embeddings). Fur-
ther, consider that the corresponding n-dimensional binary embed-
dings of the words are bw1 and bw2 respectively. We define the BCS
function so as to map a binary vector to a real number (to approxi-
mate the cosine similarity value), i.e., BCS : {0, 1}n → R. Observe,
CCS : Rm → R. Specifically, we define the cosine similarity in the
binary space using BCS as follows:

• Compute the bitwise similarity between bw1 and bw2 . This is com-
puted by the bitwise XNOR operation (⊕) on the binary vectors.
Hence, we define bit overlap bo as,

bo = bw1 ⊕ bw2 (2)

Here, the ith bit in bo is 1 if both bw1 and bw2 have the same bit
value at the ith position, else is set to 0 (for i ∈ [0, 1, · · · , n−1]).

• The bit positions in bo are then given exponentially decreasing
weights. In our framework, we set the weights of the ith bit in
bo to be 2−i. The value of bo is then computed via BCS as the
summation of the product of bit weights and bit values. That is,

BCS(bw1 , bw2) = BCS(bo) =

n−1∑
i=0

2−i · boi (3)

Observe, that when all the bits of bo are 0, we get the lower bound
of BCS to be 0. Alternatively, when all bits of bo are 1, BCS takes
the value 1−2−n

1−2−1 . Notably, BCS monotonically increases with n,
and as it approaches infinity (n → ∞), BCS converges to the
limiting value of 2. Thus we have, 0 ≤ BCS(bw1 , bw2) ≤ 2.
This provides the basis of BCS used to learn binary word em-
beddings that approximate the cosine similarity of the real-valued
word embeddings. Since, cosine similarity has a range of [-1, 1],
we operate with BCS(bw1 , bw2) ≈ CCS(xw1 , xw2) + 1, which
BRECS is trained to approximate.

The Hamming similarity between two binary vectors is defined as
the count of indices where the corresponding bits are identical. Con-
sequently, vectors with a higher number of similar bits exhibit a high
Hamming similarity, indicating a strong resemblance. A variant of
the Hamming similarity is the BCS, which assigns a weight of 2−i

to similar bits at index i. BRECS leverages BCS during the training
phase, whereas Hamming distance is employed during evaluation.
Despite the difference in metrics, both training and evaluation oper-
ate within the same space, ensuring consistency and coherence.

In this work, we optimise the approximation of BCS with CCS to
capture the different semantic information from continuous embed-
ding to the binary embedding space as later detailed in Section 3.5.

3.3 BRECS Siamese Autoencoder

BRECS uses a Siamese autoencoder architecture having two compo-
nents: an encoder and a decoder network as illustrated in Figure 1.
The encoder network maps the input continuous (or real-valued)
word embedding to a binary embedding, while the decoder recon-
structs the continuous embeddings from the internal binary represen-
tations. Given a word wi with continuous word embedding xi, we
compute its binary embedding bi using the encoder as:

bi = ψ(xi) = σ(WT
encxi), (4)

where Wenc is the weight parameter to be learned and σ(.) is an
element-wise function that outputs a binary value given a real value.
For this work, we use the Heaviside step function as σ.

The decoder maps the binary word embedding bi back to the con-
tinuous space and is defined as:

yi = f(WT
decbi + c), (5)

where Wdec is the learnable weight matrix. The function f is an
element-wise hyperbolic tangent function to be able to map the word
embeddings to the continuous space. The decoder and encoder pa-
rameters are trained to make the decoder outputs as close to the input
word embeddings, i.e., trained to minimise the reconstruction loss
between the original word embedding xwi and the reconstructed em-
bedding generated by the decoder x̂wi , as:

Lrec =
1

m

m∑
i=1

(xi − x̂wi)
2 (6)

We utilise a Siamese network for the autoencoder architecture to
learn the binary word embeddings. Given a pair of words w1 and
w2, the Siamese network uses the encoder to generate their binary
word embeddings bw1 and bw2 from their real-valued representations
xw1 and xw2 (given as input). The network is trained to learn the
binary embeddings such that the approximation error between the
BCS(bw1 , bw2) and the cosine similarity between xw1 and xw2 is
minimised.

3.4 Straight Through Estimator (STE)

Notably, the Heaviside step binarisation function σ in ψ(.) in Eq. (4)
is non-differentiable. Hence, to enable backpropagation, previous
works [33, 23] used shared weight parameters W among the encoder
and decoder networks. Utilising identical weights for both the en-
coder and decoder would detrimentally affect the learning process,
as the objective learned by the encoder inherently differs from that
of the decoder.

In this work, we leverage Straight Through Estimator (STE) [4]
to address this challenge, thereby enabling the decoupling of pa-
rameters of the encoder and decoder. STEs enable learning a non-
differentiable neural network by approximating the gradients of the
non-differentiable component. The forward pass and the backward
pass of the STE used in BRECS are defined as:

Forward Pass :σ(x) =

{
1 x > 0

0 x ≤ 0
(7)

Backward Pass :
∂σ

∂x
≈ ∂x

∂x
= 1 (8)

Thus, instead of computing the gradients of the Heaviside step func-
tion σ(.), we use the identity function as a surrogate to estimate its
gradients.

3.5 BCS Loss

The BCS function captures the similarity between bi and bj , the bi-
nary embeddings of words wi and wj , as follows:

BCS(bi, bj) =
n−1∑
k=0

2−k · (bik ⊕ bjk) (9)

where bik denotes the kth bit in binary representation bi of word wi.

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity 3997

0.11 -0.19 0.69 0.750.91

0.16 -0.26 0.55 0.660.88

1 1 0

0.24 0.70 0.55 -0.390.31

0.22 -0.89 0.66 -0.350.45

0 1 1

Figure 1. Siamese network framework of BRECS to generate binary word representations from the real-valued embeddings using autoencoder architecture.

The BCS Loss Lbcs aims to minimise the deviation of the similar-
ity between the binary embeddings bi and bj (using the BCS func-
tion) and the cosine similarity between the real-valued float32 em-
beddings (xi and xj), for word pairs wi and wj . Thus the learning
process can be formulated via the squared error as:

Lbcs =
(
e
̂CCS(xi,xj) − eBCS(bi,bj)

)2

(10)

, where ĈCS(xi, xj) = CCS(xi, xj) + 1, and CCS computes the
cosine similarity of the continuous word embeddings (refer Eq. (1)
in Sec. 3.2).

3.6 Expansive Regulariser

Following Tissier et al. [33], we introduced the expansive regulariser
for optimising the autoencoder weights. Given that binary embed-
dings possess significantly lower capacity compared to their contin-
uous counterparts, it becomes imperative to diminish the inter-feature
correlations within the binary embeddings. Hence, we use,

Lw = 0.5(||WT
encWenc − I||2 + ||WT

decWdec − I||2) (11)

where Wenc and Wdec are the encoder and decoder weights respec-
tively, while I is the identity matrix. The formulation of the loss term
Lw serves to reduce such correlations within the latent binary repre-
sentations. This prevents redundancy in the learned features across
different binary attributes and, consequently, enhances the efficiency
of information transfer to the binary embeddings.

The overall loss function used by BRECS during the training pro-
cess is defined as:

L = Lrec + λwLw + λbcsLbcs (12)

where the weights λw and λbcs are model hyperparameters. As dis-
cussed earlier in Section 3.2, BCS (used only during the training
phase) can be viewed as a weighted Hamming similarity function.
Similarly, during the evaluation phase, we employ the Sokal & Mich-
ener similarity function (refer Section 4.1), a modification of the
Hamming similarity, to compute the similarity between binary em-
beddings. Thus, the training and evaluation phases operate on similar
objectives. Observe, that this is in the same spirit as the Euclidean
distance-based training and cosine similarity-based evaluation for
language models (since Euclidean distance and cosine similarity are
closely related).

4 Experimental Setup

We now describe the empirical setup for evaluating BRECS against
multiple baselines on different tasks across a variety of benchmark
datasets. We describe the tasks and datasets used for evaluating the
quality of binary embeddings, the competing baselines and the pa-
rameter details of BRECS.

4.1 Tasks, Datasets and Evaluation Metrics

Following Navali et al. [23], we evaluate the quality of the binary
embeddings on the following:

• Word Similarity: Given pairs of words, the objective here is to
measure Spearman’s rank correlation between the human-rated
similarity score and the computed word embedding similarity. To
achieve this, we compute the cosine similarity between continuous
word embeddings, while for binary embeddings the similarity is
measured using the Sokal & Michener similarity function [30] de-
fined as n00+n11

n
. Here n00 and n11 are the number of bits in the

two binary embeddings that are both 0 and 1 respectively, while
n is the length of the binary embedding. Following Tissier et al.
[33] and Navali et al. [23], we evaluate the word embeddings on
the MEN [6], RW [18], SimLex [12] and WS353 [9] datasets.

• Word Categorisation: This task focuses on utilising a noun cat-
egoriser for evaluating the word embeddings via clustering, and
the methods are evaluated on the purity of the clusters generated.
Following Navali et al. [23], we evaluate the different approaches
using Agglomerative and K-Means clustering as suggested by Jas-
trzebski et al. [14]. The evaluation encompasses a range of
datasets, including the AP dataset [1], the BLESS dataset [2],
comprising 200 discrete nouns representing diverse classes, the
1969 Battig dataset [3] containing 5231 verbal items distributed
across 56 categories. We also utilise ESSLI 2c dataset [19], con-
sisting of 45 verbs categorised into 9 semantic classes, while the
ESSLI 2b dataset [19] features 40 nouns classified into 3 cate-
gories based on their abstractness and the ESSLI 1a dataset [19],
featuring 44 nouns distributed among 6 semantic categories, en-
compassing four animate and two inanimate classes.

These tasks measure the quality of the intrinsic semantic informa-
tion retained by the binary word embeddings.

4.2 Pretrained Embeddings

We present a comprehensive evaluation of our methodology across
three prominent word embedding spaces: Word2Vec, GloVe, and Co-
here. The Word2Vec embeddings [20] comprise a large vocabulary

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity3998

of 3,000,000 words, learned from a corpus of news articles, based on
word co-occurrences. In contrast, the GloVe embeddings [24] cap-
ture semantic relationships for 400,000 words, derived from the En-
glish Wikipedia and Gigaword 5 corpora, using co-occurrence matrix
factorization. To further generalise our approach, we also evaluate
our methodology on Cohere3 embeddings, relying on contextualized
embeddings from transformer architecture. Cohere, provides closed-
source dense vector representations in both float32 and binary for-
mats. Notably, the static embeddings of Word2Vec and GloVe em-
beddings are represented in a 300-dimensional space, whereas the
Cohere embeddings occupy a 1024-dimensional space.

4.3 Baseline Methodologies

We compare our proposed BRECS framework against the following
baseline approaches:

• Tissier et al. [33]: A binary word embedding generator based on
the autoencoder architecture. The encoder network of the autoen-
coder maps a continuous word embedding into a binary word em-
bedding utilising a Heaviside step function. Subsequently, the de-
coder leverages these binary word embeddings to reconstruct the
original continuous word embedding. We report the results as pre-
sented by Navali et al. [23].

• Navali et al. [23]: Similar to the architecture proposed by Tissier
et al. [33], the methodology uses an autoencoder to construct bi-
nary word embeddings. Additionally, a semantic preservation reg-
ulariser is introduced to minimise the Hamming distance between
similar word pairs while simultaneously increasing the Hamming
distance between dissimilar word pairs. We report the results as
published by the authors.

• Cohere4: A recent closed-source contextual embedding model ca-
pable of generating 1024-dimensional binary vector representa-
tions from textual input. We obtain the binary embeddings using
the available API call.

• For completeness, we also compare the performance of
BRECS with the original float32 real-valued Word2Vec, GloVe
and Cohere embeddings.

4.4 BRECS Implementation Details

For training BRECS to learn the binary embeddings, we randomly
sample one million word pairs for Word2Vec, GloVe and Cohere.
For training BRECS on the Cohere embeddings, we first embed the
words in float32 precision in Cohere and then train BRECS using
these float32 Cohere embeddings as input to learn the binary repre-
sentations of the words. Following Tissier et al. [33], we set the learn-
ing rate to 0.001 for all the proposed models. The batch size is set to
256. The number of bits in the learned binary representation (n) is set
to 640 for GloVe and Word2Vec, while for Cohere, it is set to 1024
(for even comparison with 1024 binary representation as returned by
Cohere API). In BRECS, for experiments on Word2Vec embeddings,
we set λw and λbcs to 0.3 and 0.7 respectively, observed to provide
the best results, using grid search. Following the same procedure for
GloVe and Cohere embeddings, we set λw, and λbcs to 0.4 and 0.6
respectively. For obtaining float32 and binary Cohere representation,
we use the embed-english-v3.05 model.

3 https://cohere.com/
4 https://cohere.com/blog/int8-binary-embeddings
5 https://cohere.com/blog/introducing-embed-v3

Table 1. Performance of different methodologies on the word similarity
task. For BRECS, we have reported the number over an average of five runs

of the model. The numbers in bold depict the best-performing binary
embedding framework (i.e., excluding float32 results).

Model MEN RW SimLex WS353

float32 73.75 36.70 37.05 54.33
float32-whitened 75.43 43.55 39.70 63.56

Tissier et al. [33] 69.96 33.40 36.36 54.54
GloVe Navali et al. [23]: V2 71.72 33.67 37.15 57.78

Navali et al. [23]: V3 74.60 38.49 38.57 59.90
BRECS 74.70 45.45 39.75 65.48

float32 67.80 48.48 43.58 62.61
float32-whitened 75.92 54.51 47.46 64.47

Tissier et al. [33] 74.32 42.95 44.52 58.37
Word2Vec Navali et al. [23]: V2 74.33 33.67 37.15 57.78

Navali et al. [23]: V3 61.76 38.49 38.57 59.90
BRECS 75.85 51.76 44.29 64.84

float32 74.85 56.81 59.93 71.51
float32-whitened 71.53 56.82 59.92 71.53

binary 69.36 53.30 56.89 69.41
Cohere Tissier et al. [33] 71.02 54.26 56.62 69.18

BRECS 72.07 55.49 57.46 70.30

For inference, we evaluated BRECS on 400,000 GloVe float32
word embeddings under two scenarios. With a batch size of 1000,
binarization took about 25 seconds, or 0.07 ms per sample. In a real-
world scenario where samples arrive individually, a batch size of 1
resulted in 960 seconds, or 2.5 ms per sample. These results demon-
strate BRECS’s scalability and effective deployment in resource-
limited environments. All the experiments were implemented us-
ing the PyTorch library and evaluated on NVIDIA 1080Ti GeForce
GPUs.

5 Results and Discussion

In this section, we report and discuss the performance of
BRECS against other baselines for binary word embedding on dif-
ferent tasks. Additionally, we conduct ablation studies to understand
the impact of changing the different components of BRECS that can
potentially impact the performance.

5.1 Quantitative Results

We initially report the performance of the methodologies on open-
source benchmark tasks.

5.1.1 Performance on Word Similarity

Table 1 reports the performance of different state-of-the-art binary
embeddings on word similarity tasks on four datasets. For GloVe
embeddings we observe that the performance of BRECS surpasses
all the existing state-of-the-art baseline approaches. Notably, the
most significant improvements are observed in the RW and WS353
datasets, where the relative performance increase exceeds 9%. For
Word2Vec embeddings, BRECS exhibits enhancements over estab-
lished baselines across all datasets, except for the RW dataset where
it ranks as the second-best model, trailing the top-performing ap-
proach by a mere 0.23 points. Further, BRECS is seen to perform
better than the recently released Cohere binary embeddings. In sum-
mary, BRECS demonstrates robust state-of-the-art performance in
word similarity tasks by effectively harnessing information from con-
tinuous embeddings.

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity 3999

Table 2. Performance comparison of the approaches on the word categorisation task. For BRECS, we report performance across an average of 5 runs of the
model. The numbers in bold depict the best-performing binary embedding framework (i.e., excluding float32 results).

Model AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c

float32 63.68 82.00 41.20 75.00 82.50 64.40
float32-whitened 66.17 78.50 41.69 68.18 65.00 57.78

Tissier et al. [33] 62.44 81.00 40.39 68.18 70.00 60.00
GloVe Navali et al. [23]: V2 63.43 77.50 39.59 72.73 75.00 60.00

Navali et al. [23]: V3 61.69 76.00 38.90 72.73 75.00 62.22
BRECS 61.44 76.00 40.79 70.45 77.50 64.47

float32 64.93 69.50 41.81 79.55 75.00 64.44
float32-whitened 59.45 84.00 38.34 72.72 75.00 57.78

Tissier et al. [33] 65.17 73.50 39.32 77.27 75.00 62.22
Word2Vec Navali et al. [23]: V2 64.18 72.50 40.07 72.73 70.00 57.78

Navali et al. [23]: V3 62.44 74.00 39.44 75.00 75.20 64.44
BRECS 66.91 75.00 39.20 81.81 75.00 68.89

float32 61.94 78.50 48.48 72.72 85.00 57.78
float32-whitened 56.71 78.00 39.43 63.63 75.00 51.11

binary 60.19 79.00 46.93 72.72 72.50 55.55

Cohere Tissier et al. [33] 61.19 82.00 46.01 70.45 75.00 51.11
BRECS 63.18 82.50 43.72 79.54 75.00 51.11

Observation. Interestingly, it is worth highlighting that we ob-
serve BRECS to outperform even the original continuous float32 em-
beddings for both GloVe and Word2Vec embeddings on almost all
datasets. We relate this to the anisotropic property [11] of embed-
ding techniques as shown by Mu and Viswanath [22]. It reports that
static and contextualized embedding space is prone to a spatial bias,
wherein embeddings of texts are concentrated within a narrow con-
ical region, leading to unrelated words depicting high cosine simi-
larities. This anisotropy, characterised by a non-uniform angular dis-
tribution of word vectors, can lead to inefficient utilisation of the
embedding space. To mitigate this issue, embedding whitening has
been proposed as a means of reducing anisotropy in text representa-
tions [27, 31].

The use of expansive regularisation in BRECS (see Eq. (11) in
Sec. 3.6), tends to minimise the correlations between the features
of the learnt binary representations, as discussed in [33]. This can
be viewed as a type of representation whitening, leading to better
performance in our model (along with the BCS function).

To validate the above, in this work, we also apply ZCA-
Whitening [17] to the original float32 GloVe, Word2Vec, and Cohere
embeddings to render the embedding space isotropic. Experiments
on these float32 whitened embeddings (reported as float32-whitened)
demonstrate that they significantly outperform their vanilla float32
counterparts for GloVe and Word2Vec. In contrast, the whitened Co-
here embeddings exhibit similar or inferior performance across dif-
ferent datasets. This may be attributed to the fact that the original Co-
here float32 embeddings already exhibit isotropic properties (based
on the training objective), which diminishes the impact of whitening.
We do not report the performance of Navali et al. [23] for Cohere
embeddings as their code is not openly available.

5.1.2 Performance on Word Categorisation

Table 2 presents the results of various models for the word categori-
sation task. When considering GloVe embeddings, BRECS surpasses
the other state-of-the-art techniques in 3 out of the 6 datasets with
comparable performance for the others. For Word2Vec embeddings,
BRECS achieves state-of-the-art performance in 4 out of 6 datasets.
Notably, it outperforms vanilla continuous word embeddings in 4 out
of the 6 datasets within this task and performs comparably on ESSLI

2b. For Cohere embeddings, BRECS outperforms other methodolo-
gies on 4 datasets, while the Cohere binary embeddings showcase
strong performance on the other 2 datasets.

Similar to the word similarity task, on multiple datasets BRECS is
seen to perform better than the original vanilla float32 embeddings.
It should be observed that reducing the anisotropy property of word
embeddings via whitening affects the cosine similarity values be-
tween the float32 representations. Since here we evaluate the task
of word categorisation, float32-whitened embeddings are not seen to
bring much value in general.

5.2 Qualitative Study

In this section, we present a thorough examination of the design
choices underlying the BRECS framework, with the goal of eluci-
dating the implications of these decisions on the overall performance
of the system.

5.2.1 Impact of Binary Embedding Dimensionality

The number of bits contained within binary embeddings exhibits a
direct correlation with the capacity of the said binary word embed-
dings. To investigate the influence of binary word embedding size on
the performance of BRECS on word similarity task, we analyze with
varying binary embedding dimensions. The results are summarized
in Table 3.

Evidently, BRECS displays a notable monotonic enhancement as
the binary embedding dimension size increases. This improvement
can be attributed to the expanded capacity of the word embed-
dings. Notably, BRECS consistently outperforms the methodology
proposed by Tissier et al. [33] across all binary embedding sizes. It is
interesting to observe that when configured with 256 and 512 bits,
BRECS surpasses conventional Word2Vec embeddings in perfor-
mance metrics on the MEN dataset. This phenomenon underscores
the capture of rich semantic and syntactic representation achieved by
our binary embeddings, given adequate learning space.

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity4000

Table 3. Performance impact of BRECS with varying number of bits (n)
on the word similarity task for Word2Vec.

Size Model MEN RW SimLex WS353

300 float32 67.80 48.48 43.58 62.61
float32-whitened 75.92 54.51 47.46 64.47

Tissier et al. [33] 46.10 25.10 20.50 30.10
64 BRECS 52.86 34.29 30.23 46.31

Tissier et al. [33] 63.30 34.30 31.40 44.90
128 BRECS 65.44 41.82 37.07 57.26

Tissier et al. [33] 69.40 40.70 37.20 56.60
256 BRECS 71.43 48.14 41.15 60.84

Tissier et al. [33] 72.70 40.20 36.80 60.30
512 BRECS 74.67 50.62 43.78 63.83

Figure 2. Impact of BRECS without STE on word similarity task
performance.

5.2.2 Impact of STE for Decoupling Parameters

BRECS distinguishes itself from prior research by employing dis-
tinct parameters for its encoder and decoder, as we postulated that
the tasks undertaken by them are inherently differ. To substantiate
our hypothesis, we conducted an ablation analysis in which we con-
figured BRECS with encoder and decoder weight matrices (Wenc and
Wdec) set to be equal, and omitted the utilisation of the STE func-
tion while keeping all other model components consistent between
the two configurations.

As depicted in Figure 2, we observe a marked disparity in the per-
formance of BRECS and the ablated model. Specifically, when the
encoder and decoder networks share parameters (depicted as No STE
by the orange bar), the performance is notably inferior compared to
the use of STE function for decoupling these networks (illustrated by
the blue bar). This contrast depicts the usefulness of STE to enhance
the learning of binary word representations.

5.2.3 Impact of Exponential Weights in BCS

We investigate the efficacy of our proposed BCS function, which as-
signs exponential weights to each bit in the binary vector. To further
analyse the impact of this formulation, we conduct ablation studies
by modifying the BCS function to employ uniform weights, where
each bit is assigned a weight of 2

n
, with n denoting the dimension-

ality of the binary vector. In this setting, the underlying assumptions
inherent to the formulation of the BCS function are indeed satisfied
(i.e., 0 ≤ BCS(bw1 , bw2) ≤ 2).

Additionally, we explore a learnable weighting scheme, where

Table 4. Performance impact of different weighting schemes in BCS on
word similarity task with GloVe embeddings.

Model MEN RW SimLex WS353

Uniform 73.13 40.48 36.58 57.78
Learnable 71.85 40.28 37.95 55.37
Exponential (BRECS) 74.70 45.45 39.75 65.48

the bit weights are parameterised and optimised during the training
phase. Results in Table 4 demonstrate that the proposed exponential
weighting strategy, as used in BRECS, outperforms the alternative
weighting schemes.

In a nutshell, we observe that the binary embeddings generated by
BRECS are robust across various tasks and provide state-of-the-art
performance on several benchmark datasets.

6 Conclusion

In our research, we introduce a novel Siamese autoencoder-based
word embedding binarisation architecture named BRECS for trans-
forming continuous word embeddings into binary representations.
The autoencoder comprises an encoder network responsible for con-
verting continuous embeddings into binary ones and a decoder net-
work for reverse transformation. The encoder network employs the
non-differentiable Heaviside step function with STE to approximate
its gradient. The incorporation of STE enables the decoupling of the
parameters of the encoder and decoder networks, leading to signif-
icant performance improvements. We propose the innovative BCS
learning function to approximate the cosine similarity between the
origin embeddings – enable better capture of semantic information
in the binary encodings.

As a future direction, we plan to extend our work to encompass the
generation of binary sequence representations for document retrieval
applications.

Acknowledgements

John McCrae is supported by Science Foundation Ireland under
Grant Number SFI/12/RC/2289_P2 Insight_2, Insight SFI Centre for
Data Analytics and Grant Number 13/RC/2106 P2, ADAPT Centre.

References

[1] A. Almuhareb and M. Poesio. Concept learning and categorization from
the web. In proceedings of the annual meeting of the Cognitive Science
society, volume 27, 2005.

[2] M. Baroni and A. Lenci. How we blessed distributional semantic eval-
uation. In S. Padó and Y. Peirsman, editors, Proceedings of the GEMS
2011 Workshop on GEometrical Models of Natural Language Seman-
tics, Edinburgh, UK, July 31, 2011, pages 1–10. Association for Com-
putational Linguistics, 2011. URL https://aclanthology.org/W11-2501/.

[3] W. F. Battig and W. E. Montague. Category norms of verbal items in
56 categories a replication and extension of the connecticut category
norms. Journal of experimental Psychology, 80(3p2):1, 1969.

[4] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation.
CoRR, abs/1308.3432, 2013. URL http://arxiv.org/abs/1308.3432.

[5] A. Bookstein, V. A. Kulyukin, and T. Raita. Generalized hamming dis-
tance. Inf. Retr., 5(4):353–375, 2002. doi: 10.1023/A:1020499411651.
URL https://doi.org/10.1023/A:1020499411651.

[6] E. Bruni, N. Tran, and M. Baroni. Multimodal distributional semantics.
J. Artif. Intell. Res., 49:1–47, 2014. doi: 10.1613/jair.4135. URL https:
//doi.org/10.1613/jair.4135.

[7] M. Charikar. Similarity estimation techniques from rounding algo-
rithms. In J. H. Reif, editor, Proceedings on 34th Annual ACM Sym-
posium on Theory of Computing, May 19-21, 2002, Montréal, Québec,

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity 4001

Canada, pages 380–388. ACM, 2002. doi: 10.1145/509907.509965.
URL https://doi.org/10.1145/509907.509965.

[8] M. Faruqui, Y. Tsvetkov, D. Yogatama, C. Dyer, and N. A. Smith.
Sparse overcomplete word vector representations. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1491–1500. The Association for Computer Linguistics, 2015.
doi: 10.3115/v1/p15-1144. URL https://doi.org/10.3115/v1/p15-1144.

[9] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin. Placing search in context: the concept revisited.
ACM Trans. Inf. Syst., 20(1):116–131, 2002. doi: 10.1145/503104.
503110. URL https://doi.org/10.1145/503104.503110.

[10] Y. Gan, Y. Ge, C. Zhou, S. Su, Z. Xu, X. Xu, Q. Hui, X. Chen, Y. Wang,
and Y. Shan. Binary Embedding-based Retrieval at Tencent. In Pro-
ceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), pages 4056–4067, 2023.

[11] J. Gao, D. He, X. Tan, T. Qin, L. Wang, and T. Liu. Representation De-
generation Problem in Training Natural Language Generation Models,
2019.

[12] D. Gerz, I. Vulic, F. Hill, R. Reichart, and A. Korhonen. Simverb-3500:
A large-scale evaluation set of verb similarity. In J. Su, X. Carreras,
and K. Duh, editors, Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2173–2182. The Association
for Computational Linguistics, 2016. doi: 10.18653/v1/d16-1235. URL
https://doi.org/10.18653/v1/d16-1235.

[13] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
[14] S. Jastrzebski, D. Lesniak, and W. M. Czarnecki. How to evaluate word

embeddings? on importance of data efficiency and simple supervised
tasks. CoRR, abs/1702.02170, 2017. URL http://arxiv.org/abs/1702.
02170.

[15] S. Jastrzebski, D. Lesniak, and W. M. Czarnecki. How to evaluate word
embeddings? on importance of data efficiency and simple supervised
tasks. CoRR, abs/1702.02170, 2017. URL http://arxiv.org/abs/1702.
02170.

[16] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov. Fasttext.zip: Compressing text classification models. CoRR,
abs/1612.03651, 2016. URL http://arxiv.org/abs/1612.03651.

[17] A. Kessy, A. Lewin, and K. Strimmer. Optimal whitening and decorre-
lation. The American Statistician, 72(4):309–314, 2018.

[18] T. Luong, R. Socher, and C. D. Manning. Better word representa-
tions with recursive neural networks for morphology. In J. Hock-
enmaier and S. Riedel, editors, Proceedings of the Seventeenth Con-
ference on Computational Natural Language Learning, CoNLL 2013,
Sofia, Bulgaria, August 8-9, 2013, pages 104–113. ACL, 2013. URL
https://aclanthology.org/W13-3512/.

[19] K. McRae, G. S. Cree, M. S. Seidenberg, and C. McNorgan. Semantic
feature production norms for a large set of living and nonliving things.
Behavior research methods, 37(4):547–559, 2005.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. In Y. Bengio and Y. LeCun, ed-
itors, 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings, 2013. URL http://arxiv.org/abs/1301.3781.

[21] W. Mostard, L. Schomaker, and M. A. Wiering. Semantic preserving
siamese autoencoder for binary quantization of word embeddings. In
NLPIR 2021: 5th International Conference on Natural Language Pro-
cessing and Information Retrieval, Sanya, China, December 17 - 20,
2021, pages 30–38. ACM, 2021. doi: 10.1145/3508230.3508235. URL
https://doi.org/10.1145/3508230.3508235.

[22] J. Mu and P. Viswanath. All-but-the-top: Simple and effective postpro-
cessing for word representations. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=HkuGJ3kCb.

[23] S. Navali, P. P. Sherki, R. Inturi, and V. Vala. Word embedding binariza-
tion with semantic information preservation. In D. Scott, N. Bel, and
C. Zong, editors, Proceedings of the 28th International Conference on
Computational Linguistics, COLING 2020, Barcelona, Spain (Online),
December 8-13, 2020, pages 1256–1265. International Committee on
Computational Linguistics, 2020. doi: 10.18653/v1/2020.coling-main.
108. URL https://doi.org/10.18653/v1/2020.coling-main.108.

[24] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In A. Moschitti, B. Pang, and W. Daelemans,
editors, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014,

Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1532–1543. ACL, 2014. doi: 10.3115/v1/d14-1162. URL
https://doi.org/10.3115/v1/d14-1162.

[25] V. Raunak, V. Gupta, and F. Metze. Effective dimensionality reduction
for word embeddings. In I. Augenstein, S. Gella, S. Ruder, K. Kann,
B. Can, J. Welbl, A. Conneau, X. Ren, and M. Rei, editors, Pro-
ceedings of the 4th Workshop on Representation Learning for NLP,
RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pages 235–
243. Association for Computational Linguistics, 2019. doi: 10.18653/
V1/W19-4328. URL https://doi.org/10.18653/v1/w19-4328.

[26] A. Rogers, I. Calixto, I. Vulić, N. Saphra, N. Kassner, O.-M. Camburu,
T. Bansal, and V. Shwartz. Larger-Scale Transformers for Multilingual
Masked Language Modeling. In Proceedings of the 6th Workshop on
Representation Learning for NLP (RepL4NLP), pages 29–33, 2021.

[27] S. Sasaki, B. Heinzerling, J. Suzuki, and K. Inui. Examining the effect
of whitening on static and contextualized word embeddings. Inf. Pro-
cess. Manag., 60(3):103272, 2023. doi: 10.1016/J.IPM.2023.103272.
URL https://doi.org/10.1016/j.ipm.2023.103272.

[28] D. Shen, Q. Su, P. Chapfuwa, W. Wang, G. Wang, R. Henao, and
L. Carin. NASH: toward end-to-end neural architecture for genera-
tive semantic hashing. In I. Gurevych and Y. Miyao, editors, Pro-
ceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 2041–2050. Association for Compu-
tational Linguistics, 2018. doi: 10.18653/v1/P18-1190. URL https:
//aclanthology.org/P18-1190/.

[29] P. P. Sherki, S. Navali, R. Inturi, and V. Vala. Retaining semantic data
in binarized word embedding. In 15th IEEE International Conference
on Semantic Computing, ICSC 2021, Laguna Hills, CA, USA, January
27-29, 2021, pages 130–133. IEEE, 2021. doi: 10.1109/ICSC50631.
2021.00031. URL https://doi.org/10.1109/ICSC50631.2021.00031.

[30] R. Sokal and C. Michener. A statistical method for evaluating system-
atic relationships, 38 (university of kansas science bulletin). 1958.

[31] J. Su, J. Cao, W. Liu, and Y. Ou. Whitening Sentence Represen-
tations for Better Semantics and Faster Retrieval. arXiv preprint
arXiv:2103.15316, 2021.

[32] N. Thakur, N. Reimers, and J. Lin. Injecting domain adaptation with
learning-to-hash for effective and efficient zero-shot dense retrieval.
arXiv preprint arXiv:2205.11498, 2022.

[33] J. Tissier, C. Gravier, and A. Habrard. Near-lossless binarization of
word embeddings. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 7104–
7111. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33017104. URL
https://doi.org/10.1609/aaai.v33i01.33017104.

[34] J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, F. Wang, and H. Hao. Con-
volutional neural networks for text hashing. In Q. Yang and M. J.
Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1369–1375. AAAI Press, 2015.
URL http://ijcai.org/Abstract/15/197.

R. Sarkar et al. / BRECS: Enhanced Binary Representation of Word Embeddings via Cosine Similarity4002

