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Abstract

Ontologies provide a structured description of the concepts and terminology
used in a particular domain and provide valuable knowledge for a range of natu-
ral language processing applications. However, for many domains and languages
ontologies do not exist and manual creation is a difficult and resource-intensive
process. As such, automatic methods to extract, expand or aid the construction
of these resources is of significant interest.

There are a number of methods for extracting semantic information about
how terms are related from raw text, most notably the approach of Hearst
[1992], who used patterns to extract hypernym information. This method was
manual and it is not clear how to automatically generate patterns, which are
specific to a given relationship and domain. I present a novel method for de-
veloping patterns based on the use of alignments between patterns. Alignment
works well as it is closely related to the concept of a join-set of patterns, which
minimally generalise over-fitting patterns. I show that join-sets can be viewed
as an reduction on the search space of patterns, while resulting in no loss of
accuracy. I then show the results can be combined by a support vector machine
to a obtain a classifier, which can decide if a pair of terms are related. I applied
this to several data sets and conclude that this method produces a precise result,
with reasonable recall.

The system I developed, like many semantic relation systems, produces only
a binary decision of whether a term pair is related. Ontologies have a structure,
that limits the forms of networks they represent. As the relation extraction is
generally noisy and incomplete, it is unlikely that the extracted relations will
match the structure of the ontology. As such I represent the structure of ontol-
ogy as a set of logical statements, and form a consistent ontology by finding the
network closest to the relation extraction system’s output, which is consistent
with these restrictions. This gives a novel NP-hard optimisation problem, for
which I develop several algorithms. I present simple greedy approaches, and
branch and bound approaches, which my results show are not sufficient for this
problem. I then use resolution to show how this problem can be stated as an
integer programming problem, which can be efficiently solved by relaxing it to
a linear programming problem. I show that this result can efficiently solve the
problem, and furthermore when applied to the result of the relation extraction
system, this improves the quality of the extraction as well as converting it to an
ontological structure.
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Chapter 1

Introduction

Ontologies are a formal representation of concepts in a domain and are intrin-
sically linked with the natural language and as such generally can be thought
of as structured linguistic databases, and have numerous applications in NLP.
Ontologies often need to be designed specifically for different domains and the
terminology they contain will naturally be different for different languages. The
task of constructing an ontology requires a large amount of manual effort and
automatic procedures to aid or replace this process are highly desirable. There
are several methods of extracting these ontologies from raw text, however these
methods often do not create an extraction that is consistent with the structure
of the ontology. This structure can be specified as a set of logical restrictions
and by making the result of an automatic extraction system consistent with
these restrictions it is possible to extract a sound ontology.

Ontologies provide a hugely valuable resource for all kinds of natural lan-
guage processing work. Possibly the most well-known example of a ontology1 is
WordNet which is simply a list of terms that are related by several principles
such as

• hypernym: X is a hypernym of Y if Y is a kind of X (e.g., “animal” is a
hypernym of “cat”)

• hyponym: X is a hyponym of Y if X is a kind of Y

• holonym: X is a holonym of Y if Y is a part of X (e.g., “car” is a holonym
of “steering wheel”)

• meronym: X is a meronym of Y if X is a part of Y

• synonym: X is a synonym of Y if X is the same as Y (e.g, “animal” is the
same as “creature”)

1Many authors differentiate between an ontology and a semantic network. In this paper I
will not make the distinction, but instead use “ontology” to refer to any structured semantic
database
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6 CHAPTER 1. INTRODUCTION

WordNet then lists for about 150,000 words the relations between these words.
This can be used for a large number of applications, for example for co-reference
resolution, which is the process of working out anaphoric references in the text.
In the quote:

Hoplophoneus is another type of cat. During the Oligocene (e.g.,
about 20 million years older than Smilodon), this creature hunted...

The objective is to deduce that the term “creature” in the second sentence
refers to the “cat” in the first sentence, and this is much easier if the system can
refer to knowledge that “cat” is a hyponym of “creature”, as it is much more
likely for a reference to be true if the two terms have a hypernym relationship,
because this knowledge indicates that the “cat” in the first sentence could also
be the “creature” in the second sentence. Another important application of
ontologies is in information retrieval (IR), this is the process of retrieving the
documents from a set of documents given some criteria such as a set of keywords,
which are most relevant to the specific criteria. A simple information retrieval
system trying to extract information for the keyword “cat” might simply return
all documents, where the word “cat” appears, however by using a ontology it
is possible to improve this result by also including hypernym terms such as
“feline”. This means that the IR system can now retrieve more potentially
relevant documents.

In specific domains such as disease control, it is often the case that a gen-
eral ontology such as WordNet is not effective for the purposes as it may not
include specific terms that needed and its limited set of relations may not be suf-
ficient for the applications. For example in disease control the system may come
across a term like “EV-71”, which is an abbreviation for the virus “Enterovirus
71” and is unlikely to be in many general-purpose ontologies. Furthermore, it
is desirable to know that occurrences of the term “Enterovirus 71” or “EV-71”
indicate the disease “hand, foot and mouth disease”, this requires that the on-
tology contains the relation “causative agent”. In response to these issues a lot
of research has been invested in adding concepts such as logical restrictions, val-
ued attributes, rules and axioms, in addition to the simple terms and relations.
This allows ontologies to better represent the terminology of specific domains,
however creating an ontology is a much more complex process.

One further problem with many ontologies is their lack of availability and
completeness. Even for English many terms are not included in WordNet, es-
pecially those for specialised domains such as bio-medicine. For other languages,
especially non-European languages, such as Vietnamese or Thai, resources of the
size and completeness of WordNet simply do not exist.

For these reasons, it is necessary to investigate the topic of automatic ex-
traction of ontologies, as this can be used for great benefit in a wide range of
domains. This involves several tasks: firstly it is necessary to identify the terms
from a document which are of most interest, for example for disease control, this
means identify diseases, virii, bacteria, symptoms etc. Then once these terms
have been extracted, assuming there is a relations to be extract, the goal is to
work out which of these terms are related and how. There are a number of ways
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to do this, first of all simply looking at the terms themselves, for example it is
often possible to tell that two terms such as “AIDS” and “acquired immunod-
eficiency syndrome” are related as one is simply abbreviations of the other. It
is also possible to use the contexts that terms appear close to each other, for
example seeing the phrase

AIDS is a disease of the human immune system...

Is a clear sign that “AIDS” is a hyponym of “disease”. We can also used
shared contexts: for example, the terms “dog” and “terrier” are frequently
followed by the verb “bark”, which suggest some degree of similarity between
those two terms. Although all of these methods are useful, only pattern based
methodologies can differentiate between different relations, however it is not
clear how to manually extract patterns, which are indicative of a particular
relation, and generalise them sufficiently.

Once the terms and the relations between them have been extracted it is
necessary to create an ontology for them, or incorporate them into an existing
ontology. Ontologies generally have a strong structure, however if the system
is not 100% accurate its extraction may not fit the structure of the network,
so the result must be altered to fit into the structure of the semantic network.
A common example of a structure is the synonym/hypernym taxonomy, this is
the basic structure used by WordNet and requires that terms are grouped
into synonyms sets (or synsets in WordNet’s terminology) and that these
synonym sets are arranged hierarchically in a tree graph. This is quite different
from the simple network form where two terms are simply connected or not
connected, for example if we know that “cat” is a hyponym of “mammal” and
that “mammal” is a hypernym of “animal”, then it is only possible to add this
into a synonym/hypernym taxonomy if it is also known that “cat” is a hyponym
of “animal”. So to add this data into the structure the system needs to be able
to decide if it is more likely that “cat” is a hyponym of “animal” or one of the
two extracted facts was erroneous.

This idea of structures is further extended by ontologies, which allow multiple
relations to be defined and allows for restrictions to be placed on these relations.
For example the ontology language OWL 2 uses the following restrictions on
relations:

• Transitive: If a relation is transitive and x is related to y and y is related
to z, then x is also related to z.

• Symmetric: If a relation is symmetric then it means if x is related to y
then y is also related to x.

• Asymmetric: If a relation is asymmetric then it cannot be true that
both x is related to y and y is related to x.

• Reflexive: If a relation is reflexive then every element must be related to
itself.
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• Irreflexive: If a relation is irreflexive then no element can be related to
itself.

• Cardinality: A relation may have a minimum cardinality of n and a
maximum cardinality of m, these means each element x must be related
to at least n other elements and cannot be related to more than m.

• Disjoint: Two relations can be disjoint meaning that a pair of elements
cannot be related by both relations.

• Range/Domain Limits: A relation may have a limit to what it can
state a relation exists between, for example the relation “causative agent”
might be limited to be between “pathogens” and “diseases”.

• Sub-property: A relation may be a more specific version of another
relation hence it can only apply to a pair of elements if the super-relation
also applies.

In order to handle such restrictions it is necessary to develop an algorithm, which
can handle these complex restrictions and the way their interactions. I model the
set of elements and the relations between them as a set of graphs, where there is
a link between each element if the system extracted that the relationship holds
between these elements. From this model I can also say that only some of these
possible networks are correct with respect to the relationships and then I say
that the goal is to find the network which is correct and closest to the extracted
relations. This is in general quite difficult, as even if there are restrictions
that can be stated in just propositional logic form then the problem of finding
a single consistent network is NP-complete, as it is the Boolean satisfiability
problem, which means that attempting to find the optimal solution will be an
NP-hard problem. Furthermore if I wish to deal with the kind of rules found
in ontology languages such as OWL, I need to be able to deal with first-order
logic restrictions and this can lead to further problems such as undecidability.
This means that robust and specialised algorithms will be needed to be able to
quickly find solutions to these problems.

In Summary, there are two key problems I am concerned with in the paper.
Firstly the problem of extracting relationships from text, which I will handle
through the use of patterns. It is not in general clear how to form these patterns
in such a way that they are sufficiently generalised. I will present a methodology
that can generalise this pattern, and cuts out the majority of the search space,
without losing any potentially valuable patterns. The second issue is the task
of forming these binary relations into a structured ontology. I assume that
the structure of the ontology can be represented by a set of logical statements
and show that this gives a novel problem, for which new algorithms need to be
developed. I then develop that into an algorithm which is more efficient than
näıve approaches or algorithms adapted from related problems.



Chapter 2

Related Work

2.1 Ontologies

2.1.1 WordNet and related networks

WordNet is considered by many to be one of the most important ontologies
currently available. It was initiated at Princeton University in 1985, and was
intended to be a resource that was useful to both humans and machines, as a
knowledge source about the English language. It achieves this by acting as a
combined thesaurus/dictionary, combining words with the same meaning into
synsets (“synonymy sets”) and then organising them into a hierarchical struc-
ture. The database focuses on general English and contains about 150,000 terms
in 115,000 synsets. One of the main failings of WordNet is its comparatively
low coverage of terms from specialised domains, for example Bodenreider et al.
[2003] attempted to match terms from a biomedical resource on genes called the
Gene Ontology[Ashburner et al., 2000], which contains very specific terminology
related to genes and genetic disorders. They found that WordNet gave very
poor coverage of such terminology, for example they found that only 47 out of
1903 (2.5%) of “genetic disease names” could be mapped to terms in Word-
Net. While, this is not surprising, as the kind of terminology used in a specific
domain such as Genetics is naturally very different from that used in the general
domain that WordNet is aimed at, it does show that it is necessary to create
ontologies that are applicable to specific domains.

One example of an attempt to extend WordNet to a new domain is Medical
WordNet ([Smith and Fellbaum, 2004]); this project added not only a large
amount of medical terminology, such as disease names and genetic terminologies
but also two additional networks that they call the MedicalFactNet and
MedicalBeliefNet. These two networks are intended to describe medical
facts such as

Aspirin doesn’t help in the case of a hangover

And split these facts into two groups, one for those facts, which are well estab-

9
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lished and agreed upon by the majority of medical professionals (MedicalFactNet)
and a second set, which do not have a consensus of agreement, but may be useful
for making diagnoses (MedicalBeliefNet).

As WordNet is a resource that contains knowledge only in English this
means that a new network must be made for nearly every other language, as
was seen in the project called EuroWordNet [Vossen, 1998], which attempted
to create word nets for Dutch, Italian, Spanish, German, French, Czech, and
Estonian. As well as creating new ontologies for these languages, they also
created a inter-lingual-index, which created a link between “rocket” in the En-
glish WordNet, “Rakete” in the German part of EuroWordNet and “fusée”
in the French part; this was intended to aid automatic translation. In addi-
tion they added new relationships not found in the original WordNet such as
role patient which indicated the usual subject of a verb, for example “stu-
dent” is often the subject of “teaches”.

WordNet is very effective for nouns, however as in the previous example,
the network lacks a lot of information, which would be useful for verbs. For this
reason, FrameNet [Baker et al., 1998] was created, which encodes semantic
information about its terminology in what it calls “frames”. These frames state a
large amount of information about how a verb interacts with other terminology.

frame(DRIVING)
inherits(TRANSPORTATION)
frame elements(DRIVER (=MOVER), VEHICLE (=MEANS), RIDER(s)
(=MOVER(s)), CARGO (=MOVER(s)))
scene(DRIVER starts VEHICLE, DRIVER controls VEHICLE, DRIVER
stops VEHICLE)

This frame for example concerns the action of “driving” and shows that this
frame has several other elements such as “driver” and “vehicle” and “cargo”,
which are implied by the action. This allows for a system to have a more
complete understanding of the action and how it can be interpreted.

2.1.2 Logic and Ontologies

It is clear that for many different domains and ontologies with different purposes,
a large number of different structures and relationships need to be defined, for
this reason it is necessary to standardise the form of these databases in a logically
consistent manner. This leads to the development of ontology languages, and
in particular the ontology language OWL (Web Ontology Language)1. One
of the first papers to claim the need for a unified design for ontologies was
Gruber [1995], who claimed that an ontology was required to have the following
properties

• Clarity: All terms should be uniquely and unambiguously defined

1Acronym is deliberately incorrect: “Why not be inconsistent in at least one aspect of a
language, which is all about consistency?” - Guus Schreiber
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• Coherence: The logical foundation must be clear and “at least” logically
consistent.

• Extendability: The ontology should be designed so that it can be ex-
tended in new directions without the need to redefine base definitions.

• Minimal Encoding Bias: The system should be minimally dependent
on its encoding.

• Minimal Ontological Commitment: The system should make as few
claims about the world as is necessary for its purposes.

This leads to the creation of several ontology languages such as KIF, DAML+OIL
and CycL, however I shall focus in this paper on OWL (Web Ontology Lan-
guage)2, which has grown popular based on its usage in the “semantic web”.
OWL defines several key concepts

• Classes: Hierarchically organised groups of concepts

• Instances: Particular instances of a class

• Properties: Relationships between classes/instances and other classes/instances,
or valued properties which take numeric/text values.

• Restrictions: A list of axiomatic restrictions on a particular property.

While OWL and other languages are useful for writing sound ontologies,
there is a key problem in how to construct the ontology and what to include
and not to include. A very interesting work is that of DOLCE [Gangemi et al.,
2003], a “top-level ontology”, this does not attempt to provide the terminology
for a specific domain but instead provide a basis for all ontological discussion.
They did this by defining a set of classes, which could be logically defined,
namely “Endurant” (things that are), “Perdurant” (things that happen), “Qual-
ity” (something that describes something else) and “Abstract” (something that
is not a thing). More pertinently they also dealt with the definition of a tax-
onomic relation in Guarino and Welty [2000] where they state and define four
key properties that relationships should be defined by

• Identity: This is “the problem of distinguishing a specific instance of a
certain class from other instances of that class”.

• Unity: This is the problem of “distinguishing the parts of an instance
from the rest of the world”.

• Essence/Rigidity: This defines whether a property is “essential” to that
instance or if it is mutable, for example a “person” is rigidly a person, as
this fact cannot change, however a “student” may cease to be a student

2Formally defined at http://www.w3.org/TR/owl-features/ , a solid introduction is given
in Antoniou and van Harmelen [2004]
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Name Definition
#$TransporationDevice The device used for transportation
#$Conveyance The collection objects used for moving things
#$Vehicle The device, which provides motive force
#$transportees The objects being transported
#$passengers The persons being transported
#$fromLocation The origin of the transportation event
#$toLocation The destination of the transportation event

Figure 2.1: Some examples relations of Cyc

• Dependence: This is the difference between those problems which are
extrinsic/intrinsic, that is those that are defined by the object itself, and
those that are dependent on other objects.

By giving these definitions it makes it easier for to add strong logical principles
to the relationships and make an ontology a more well-defined object.

One of the most complete ontologies created was the Cyc ontology of Lenat
[1995], which attempted to encode a comprehensive database of “common sense
knowledge”. This means that in addition to the having hypernymy/synonymy
information like most ontology, Cyc also contains approximately 6000 other
concepts, including for example semantic relations like “capital city of” and
facts like “capable of flight”. To demonstrate the scope of the database figure
2.1 shows some of the relations that are used to describe a transportation event.

2.1.3 Applications of Ontologies

The literature on applications of ontologies is too broad to fully consider within
the scope of this thesis, but I review here several of the more pertinent applica-
tions, which highlight the need for good ontologies. I first return to WordNet
as it is the most widely used semantic network and I will discuss some of the
practical applications, which WordNet has been used for. Text retrieval is the
task of retrieving from a set of document a subset, which is relevant to some
set of terms commonly referred to as key-words. This should be familiar to
most readers as the task performed by Internet search engines such as Google.
It should be clear that the use of synonym information from an ontology such
as WordNet should be able to enable the system to find documents, which
do not contain the key-words and disambiguate documents, which contain a
key-word but are not appropriate to the given query. Indexing is the proce-
dure of creating an index from the terms to the documents, which contain these
terms and in Gonzalo et al. [1998], they used WordNet’s synsets to index their
documents, rather than the key-words themselves. They found that by doing
this and enabling querying by a WordNet synset instead of a key-word, they
improved the precision of their results from 48.0% to 62.0% against a baseline
system. A similar experiment was done in Voorhees [1993], where she turned to
the problem of using WordNet information to disambiguate key-words with
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multiple meanings. For example, the term “base” has many meanings, however
if it occurs alongside words such as “bat”, “glove” and “hit”, then it can be
assumed it is the baseball term meaning

A place that the runner must touch before scoring3

They found mixed results for the ability to improve the quality of retrieved
documents, however they claim that using disambiguation is essential for future
systems.

Another key use of ontologies is for co-reference resolution and similar tasks.
Co-reference resolution is the problem of resolving terms which refer to terms
mentioned earlier in the same discourse. There are many forms of co-reference
and ontologies can be useful when the referent term is a common noun such as
in the following example:

Use of Scoring High is widespread in South Carolina and common
in Greenville County... Experts say there isn’t another state in the
country where... 4

This is sometimes referred to as bridging and relies on knowing semantic knowl-
edge about South Carolina, namely that South Carolina is a state. In Markert
and Nissim [2005] they found that in a selection of articles from the Wall Street
Journal, 45.7% of all anaphoras used a common noun, they further investigated
and found that WordNet as a knowledge source could help in 43.0% of these
cases.

One of the uses of ontologies, is the one with which ontologies are now
frequently associated: the Semantic Web, first defined by Berners-Lee et al.
[2001]. This project attempts to encode into the world-wide web meta-data
describing the objects on the page in a unified way that a computer can handle.
This offers advantages such as the ability to create agents, which can visit a
website and automatically extract information from it. For example, a user
looking for a camera would currently have to visit many electronics sites and look
at cameras with different technical specifications and compare prices, however
if there was meta-data then the agent could automatically visit these sites and
extract price and specifications such as maximum zoom, sensor mega-pixels etc.
The key underpinning of semantic web is a single, well-defined vocabulary. For
this reason, the semantic web requires the definition of many ontologies, which
define the terminology used in these specific domains. In the camera example
there would be an ontology including elements for such things as “maximum
zoom length” and “sensor mega-pixels”. The semantic web further requires
a single consistent way to access any data in a single ontology or for cross-
ontology reference, for this reason they use a single ontological language with
a fixed structure. The language designed for the semantic web is OWL, which
has since become a popular ontology language for other applications.

3WordNet definition
4Quote from Markert and Nissim [2005]
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Finally, ontologies are often used for the organisation of information. This is
especially important in medical applications as the amount of data generated on
a topic such as Genetics makes it difficult for it all to be correctly categorised.
For this reason, the Gene Ontology (GO) [Ashburner et al., 2000] was created
with the goal of creating a single unified system for referencing genes. They per-
formed this by creating a record for each identified gene and giving it a unique
ID. This project forms part of the Open Biomedical Ontologies project, which
attempts to develop a set of ontologies, based on an agreed set of design prin-
ciples, in order to facilitate integration between ontologies in different domains
of bio-medicine. A similar project was that of the Medical Subject Headings
(MeSH)5 database which was created to list all terms related to medical do-
mains and give them a unique ID, which could be used for indexing documents
and articles by their subject. Another project to organise clinical information
consistently is Snomed-CT [Stearns et al., 2001], which was designed using
to allow consistent sharing of computer records between health care providers.
This database was later incorporated into a meta-thesaurus called UMLS, which
has increased range and coverage.

Summary

WordNet is one of the most successful examples of an ontology, however it
only covers general English and as such there is a significant need to expand it
to new domains such as medical terminology and new languages. WordNet
only contains a limited number of relationships between terms and for differ-
ent domains and applications it may be necessary to include new relationships.
Many ontologies expand on the structure of WordNet to give a logical frame-
work in which new relationships can be added. Ontologies see a wide range of
uses, such as for co-reference resolution a key stage in understanding texts or in
information retrieval as knowing how terms are related is useful to improving
both the precision and recall of the system. Finally, the logical information
encoded in many ontologies makes them ideal for a number of reasoning tasks
such as those in the Semantic Web.

2.2 Extracting Semantic Relations

Although a lot of research on automatic techniques for ontology extraction ex-
ists, most of the ontologies I have looked at so far have been entirely or mostly
manually created. As such, integrating these automatic techniques into the
real-world work-flow of ontology creation is an important issue. For example in
order to recreate a general ontology of the same scope as WordNet for a new
language it would require producing a similar number of terms which would
probably take tens of thousands of man-hours. For this reason there has been
a lot of interest in the automatic construction of networks and ontologies and I
will now present a survey of the methodologies, which have been used to do this.

5Open access and download at http://www.nlm.nih.gov/mesh/
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1. NPh such as {NP, NP . . . (or | and)} NP

2. such NPh as {NP ,}* {(or | and)} NP

3. NP {, NP}* {,}? or other NPh

4. NP {, NP}* {,}? and other NPh

5. NPh {,} including {NP ,}* {(or | and)} NP

6. NPh {,} especially {NP ,}* {(or | and)} NP

Figure 2.2: Patterns for extracting hypernym relations from free text as given
in Hearst [1992] (NPh denotes the hypernymous term)

In the discussion that follows I group the existing methods into three groups:
pattern-based extraction relies on the occurrence of term pairs in the same con-
texts and uses the words in the context to identify the relation; distributional
clustering uses the contexts that terms occur in individually and attempts to
group semantically related elements based on similarities of these contexts; term
variation is based on the form of the term and uses similarities between terms
to identify, which are semantically related.

2.2.1 Pattern-based extraction

A seminal paper on the topic of relation extraction is that of Hearst [1992],
here she dealt with the problem of extracting terms that exhibit the hypernymy
relationship, for the purpose of expanding machine readable dictionaries (i.e.,
WordNet). Her approach involved noting that such terms often occurred near
each other in stereotypical patterns such as

The bow lute, such as the Bambara ndang, is plucked and has an
individual curved neck for each string

This leads her to conclude that if there is a noun phrase followed by the text
“such as” and then another noun phrase she could assume that there existed a
hypernymy relationship of the form

hyponym(“Bambara ndang”, “bow lute”)

She proposed the following method for developing these patterns

1. Decide on a lexical relationship.

2. Collect a set of term pairs known to have this relationship and a corpus,
which contains these pairs.

3. Find the places where these terms co-occur.

4. Find commonalities and hypothesise a pattern.
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5. Use this pattern to find more term pairs and repeat the process.

Using this method, she found the patterns in figure 2.2 and applied them to
encyclopedic text, finding found that 20.4% of results were new to WordNet.6

Perhaps, the greatest weakness of this work was that there was no way to
automate the process or provide a strong comparison between the effectiveness
of the different patterns, which perhaps lead to the inclusion of a relatively
“weak” pattern (number 6 in figure 2.2), while excluding possibly the strongest
result as show in the results of Snow et al. [2004]

NP-like NPh

A more detailed exploration of Hearst’s methodology was done in Cimiano and
Staab [2004], in which they used one of the largest corpora currently available:
the set of websites indexed by Google. Then by applying Hearst’s patterns and
a few patterns of their own invention they found they could get a precision of
62.3% and a recall of 45.1%, showing that given enough data this approach can
be very effective and complete. Another attempt to reapply Hearst’s methodol-
ogy was performed in Yu et al. [2002], where they worked on extracting relations
in a very specific domain, namely that of gene/protein names, and attempted to
extract synonyms from the data. Their approach lead them to developing several
patterns. Especially they found that lists separated by commas or slashes were
often indicative of synonymy as well as more obvious patterns using the phrases
“also called”, “known as” and “also known as”. After applying several filters
designed to filter terms based on the structure of their documents and domains
they managed to extract synonyms with a precision of 71%. This demonstrates
that this methodology is applicable to different relations and domains, however
one of the key issues is the ability to properly evaluate the effectiveness. One
approach for this was performed in Yang and Su [2007], they used a simple
methodology for creating their patterns, by including only the few words that
came between the two seed terms, so for example from the seed terms “Bill
Clinton” and “president” and the context

Bill Clinton is the elected President of the United States

They would extract the pattern

<#t1#> is the elected <#t2#>

This method allows for the quick extraction of a large number of patterns, but
these patterns are far too numerous to be easily applied so they used a metric
called point-wise mutual information defined as

pmi(x, y) = log
P (x, y)
P (x)P (y)

6Given the date of the experiment, the size of WordNet is much smaller at the time of
Hearst’s experiment than the valued stated in this paper, in fact following the work of Snow
et al. [2004], WordNet has been extended to include terms found by a methodology which
incorporated that of Hearst [1992], so it seems unlikely as large a value would be obtained,
when compared against WordNet 2.0
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So if (Ei, Ej) is the event that a pair of terms Ei and Ej occur in a text and p
as the event that a pair of terms is separated by the text p then it follows that

pmi(p, (Ei, Ej)) = log
occurrences(Ei, p, Ej)

occurrences(Ei, Ej)× occurrences(p)

They then evaluated a reliability for these patterns as the average PMI for each
pattern across all seed pairs. This data was extracted and used to improve the
effectiveness of a co-reference resolution system in a similar way to Markert and
Nissim [2005], as already mentioned. Another approach was taken in Snow et al.
[2004], where they used a dependency grammar to extract their patterns. This
has the advantage that the patterns are not affected by small lexical variations
as the pattern is based on the syntactic structure of the text, however the text
needs to be parsed before it can be used. For parsing they used a specialised
dependency parser called MINIPAR [Lin, 1998]. The dependency grammar is
also useful as it shows which parts of the sentence are related to other parts so
the sentence

I have a brown dog

Is parsed as

Modifier Category Head Type
I N < have subj
have V
a Det < dog spec
brown Adj < dog adjn
dog N > have comp

Figure 2.3: Dependency paths of “I have
a brown dog”

This is also represented in figure
2.3. They then simply chose all of
these dependency paths between their
seed pairs which occurred between at
least 5 pairs of nouns. This method
created a large amount of patterns,
many of which may be far to general
and lead to a lot of false positives,
so they then formed their results into
vectors and used a statistical classi-
fication algorithm to determine if a
particular pair is a hypernym or not
based on the dependency paths that
the pair occurs in (this method is fully
described in section 3.4). They found
that by doing this they could improve
the F-measure from 14.2% using just
the patterns of Hearst [1992] to 27.1% with their dependency paths based pat-
terns.
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Parsing the corpus to gain patterns is potentially powerful however it takes
a large amount of computational overhead, and for many languages parsers do
not exist. Furthermore, using a parser can lead to the phenomenon of error
carried forward, which means that if the parser makes a mistake, then this will
impact the ability of the pattern system to develop patterns correctly. For
this reason I shall consider extracting patterns based on the lexical structure of
text. One system for extracting information from free text is the WHISK system
[Soderland, 1999]. This method starts from a base expression with wild-cards
and capturers; for example to extract two slots, the pattern may start as

* (slot1 ) * (slot2 ) *

This rule is essentially meaningless as it matches everything. The WHISK
system then proceeds by “adding” terms, i.e., it replaces the wild-cards, “*”,
with actual matches from the text. So for example consider the text

the price is $ 20

Where “price” is labelled as slot1 and “20” as slot2, then from this example
any of the other terms “the” “is” and “$” could be added. This means that the
following pattern could be obtained

* (slot1 ) * “$” (slot2 ) *

This process can be repeated by adding more terms or removing wild-cards to
gain a very large variety of patterns. For this reason a metric is necessary to
decide if the patterns being generated are useful. For this Soderland uses the
Laplacian expected error defined as

Laplacian =
e+ 1
n+ 1

Figure 2.4: Snowball system work flow

Where e is the number of incorrect
matches to the pattern and n is the
total number of matches. The sys-
tem then adds terms one by one until
the rule has no errors on the training
data or there is no improvement in the
Laplacian expected error. This can be
seen as a sort of hill-climbing search,
and as such cannot be expected to
produce the true optimum values, but
can be effective at creating applicable
rules.

Another system which has been
used for extracting relations from text
is Snowball [Agichtein and Gravano,
2000]. Snowball uses a much simpler
basis for extracting patterns, in that
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it only takes the text occurring between the pair of terms (similar to the ap-
proach of Yang and Su [2007]), but their methodology uses the patterns to
extract more seed term pairs, and hence generate more patterns, illustrated in
figure 2.4. Seed term pairs are a set of term pairs that are used initially as the
training data for the process and may be obtained from an existing ontology or
by manual input. Snowball takes the seed term pairs and uses those to make
patterns, which it then applies to create more term pairs and so forth until
some criteria is met. To control this loop it assigns a confidence to each pattern
defined as

conf(P ) =
positives

positives+ negatives

It then defines the confidence in each generated tuple, T , as

conf(T ) = 1−ΠP (1− Conf(Pi))

Where P is the set of patterns which have context which match to the tuple T .
The confidences are then iteratively updated as

conf(P ) = confnew(P )×W + confold(P )× (1−W )

W is a weight value which controls how quickly the confidence value can change.
This system is designed to effectively extract a large number of patterns from
very few initial examples and was successfully applied to the problem of extract-
ing synonyms from free text by Yu and Agichtein [2003].

One potential method to extract patterns and generalise them is to use a
technique called sequence alignment, which is widely used in molecular bio-
informatics to extract data from sequences of DNA and protein. The classic
algorithm for this method is the Needleman-Wunsch algorithm [Needleman and
Wunsch, 1970], which is used to compute an alignment between two sequences.
For the purpose of this algorithm assume there is a set Σ of symbols (e.g., for
DNA analysis Σ = {A,G,C, T}), and there are two sequences A,B of different
length, that is A ∈ Σn,B ∈ Σm. In addition, there is a special gap character
denoted −, then an alignment of A,B is defined as two sequences A′, B′, of
length k which are identical to A,B respectively except that a number of gaps
have been added. For example the sequences

A = GGCATACTGT
B = GGACTATAGT

Give the following possible alignment

A′ = GGCATACT---GT
B′ = GG---ACTATAGT

It is then possible to define a similarity function, S : (Σ∪{−})×(Σ∪{−})→ R,
which says how similar to characters are to one another.

similarity(A′, B′) =
∑
i=1...k

S(a′i, b
′
i)
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It is now possible to state that an optimal global alignment of A and B is
the alignment, A′,B′ which is maximal with respect similarity(A′, B′). Needle-
man and Wunsch [1970] presented a dynamic programming algorithm capable of
solving this problem in polynomial time, which is still widely used for molecular
biology. In Chang and Lui [2001] they use this technique to generate patterns
suitable for extracting facts from HTML documents and found alignments to
generalise these patterns and improve their extraction. The form of their pat-
terns is in terms of suffix trees, which I will not describe here, however their
method to stop these patterns from over-fitting to the data is through the use
of alignment. For example if there are three patterns in a multiple alignment (a
generalisation of sequence alignment to more than two sequences), e.g.,

a d c w b d
a d c x b -
a d c x b d

Where the symbols represent matching elements, then there is a generalised
pattern from this alignment: “adc[w|x]b[d]?”, that is the 4th elements matches
either to w or x and the last match to d is optional. They applied this to a task of
extracting document matching a key, and found that by applying alignment to
their patterns they improved their retrieval rate from 86% to 97% and accuracy
from 86% to 94%. Another approach was taken in Barzilay and Lee [2003],
where they used sequence alignment to paraphrase texts. They formed their
sentences into, word lattices7, from which they use multiple alignments to find
similarities and replace non-matching elements with slots, to create a “slotted
lattice”. They then found by using these slotted lattices and replacing terms
from the slots of one lattice to another they could create paraphrased sentences.

An interesting take on the problem of extracting relationships and the terms
between them was taken in Davidov et al. [2007]. They were not interested in
extracting a given relationship such as hypernymy, but instead find a variety of
binary lexical relations. For example, from a seed set of a list of countries they
managed to discover several relationships, which were strongly related to coun-
tries, such as capital-of, language-spoken-in and president-of. Their methodol-
ogy for doing this was:

1. Using a seed of two (or more) examples, automatically obtain other ex-
amples belonging to the same class. This can be done by looking for lists
e.g., “France, Britain, America” or common words such as “and” or “or”.

2. For each concept word, find those terms, which occur close to the concept
word, e.g., “Paris” may often occur close to “France”.

3. Develop patterns linking these context words.

4. Group patterns based on similarity of their form (e.g., they contain a
common low-frequency word), or the similarity of their output (i.e., they
produce similar pairs)

7This is not to be confused with lattice as used in this paper, it is actually similar to the
dependancy trees as discussed above
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By using this methodology they can extract ontologies on a particular topic,
with reasonably high precision and as a bonus the relationships chosen by this
methodology are those, which are most commonly used in the chosen text.
Hence, ontologies of multiple relations can be developed in an unsupervised
manner.

2.2.2 Distributional Clustering

Another group of methods that are often used for identifying terms and forming
them into ontologies is known as Distributional clustering, which consider the
context that a term tends to occur in and then apply clustering to work out,
which terms are most “similar”. One of the earlier works on this methodology is
Pereira et al. [1993], who considered the connection between nouns and verbs.
In particular they calculated for each noun/verb pair a probability that that
noun could be the direct object of the verb. They first tabulate from the corpus
all the occurrences of a particular noun, n, with a specific verb, v, denoting this
fvn. They then attempt to find the function

pn(v) =
fvn∑

v′∈V fv′n

This function can be thought of as the probability that n is the direct object of v.
While this seems readily computable, in fact, given the number of combinations
of v and n, the size of the corpus that would be needed is to great to allow for
easy computation. They get around this problem by splitting the set of verbs
into a set of clusters C, and defining the probability as

p̂n(v) =
∑
c∈C

p(c|n)pc(v)

Where p(c|n) is the membership probability of n in c and pc(v) is v’s conditional
probability given by the distribution for cluster c. They then use a clustering
approach to find these sets of clusters and the probability functions on them.
After calculating these values, they gain a better estimate of the function pn(v)
they can then calculate the similarity of two nouns by the use of the Kullback-
Leibner distance, defined as

D(n||m) =
∑
v∈V

pn(v)log
pn(v)
pm(v)

By using this methodology they could find class of words that are similar in
meaning, for example by using just the verb “fire”, they found the following
class of nouns

• Gun, Missile, Weapon

• Shot, Bullet, Rocket, Missile

• Officer, Aide, Chief Manager
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And also found that the first two classes were closer to each other than the
second.

This approach was also taken by Bean and Riloff [2004] and applied to
the problem of co-reference resolution. They used the same idea however they
did use a pattern development system called Autoslog [Riloff, 1996] to develop
patterns for denoting the context of the nouns. They also combined this by
using a Dempster-Shafer decision model instead of a clustering approach to
decide co-references and applying this to the MUC-6 tasks they found significant
improvement in result from 57% to 63%.

A closely related method is known as Latent Semantic Analysis, which uses
the documents which terms occur in to work out which terms are most closely
semantically related. Assume there are a set of documents, D, and these docu-
ments consist of a set of words, W , then a matrix, M of size |D| × |W | can be
created with

mij = the number of occurrences of word wj in documents di.

In order to compare terms by which documents they occur, LSA decomposes
the matrix using a technique known as singular value decomposition. This is
defined (for real matrices) as finding three matrices such that

M = UΣV T

Where

• U is orthogonal, that is UUT = UTU = I

• Σ is diagonal, that is σij = 0 if i 6= j

• V is orthogonal

The key is that as U is orthogonal, which means that its columns are linearly
independent, this is formally defined as if the columns of U are U = {u1 . . . un}
there does not exist a set of values {c1, . . . cn}, which are not all zero such that

0 = c1u1 + . . .+ cnun

For the purpose of this analysis, it is possiblt to think of this method as rear-
ranging the space of document/term co-occurrences into a number of different
axis, where each axis represents an independent “aspect” of the data. The val-
ues on the diagonal of Σ then express the “importance” of each axis. These
values can be used to represent each term based on how it is represented in each
axis, in fact the values for each term are given by the rows of UΣ. These vectors
can then be used to compute the similarity of two terms using cosine similarity
defined as

sim(x,y) =
x.y
||x||||y||

This method was used in Cederberg and Widdows [2003], where they attempted
to extract hypernym relationships using the patterns of Hearst [1992] and then
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filtering the extracted term pairs by selecting only those, which have a high
similarity according to the LSA method. They reported that by performing
this they could increase the precision of their method from 46% to 64%.

Another method for distributional clustering was applied in Widdows and
Dorow [2002], they first found all the lists in a corpus, given by the appearance
of terms separated by commas and “and”/”or”. This allows them to construct
a graph where each node corresponds to a term and the nodes are linked if the
terms occur somewhere in a list. They then formed “classes” of words from a
single term, by adding terms from a “neighbourhood” by the following criteria:
Let A be a set of nodes, and N(A) the neighbours of A, that is those terms,
which are connected. For each u ∈ (N(A)−A) define the affinity as

affinity(u,A) =
|N(u) ∩N(A)|
|N(u)|

The algorithm then proceeds by adding a node with the highest affinity to A
from N(A)−A until the highest affinity is under a certain threshold. They ap-
plied this method to a number of classes and found that they got 82% accuracy,
for example from the seed word “murder” they extracted {“crime”, “theft”,
“arson”, “incest”, “fraud”, “larceny”,... }.

2.2.3 Term Variation

Another method for looking at the similarity of terms is called term variation,
which works by looking at the form of the actual term and using the similarity
of the words in it to deduce if the terms are related. For example it is clear that
“cancer of the mouth” and “mouth cancer” are semantically related as they use
the same words. In Jacquemin [1999], he defines three main ways that term
variation occurs

• Syntactic Variations: This is when the content words are the same but
the organisation of the terms is different, this includes the addition of mod-
ifications and/or coordinate terms, for example the addition of “hospital-
acquired” to “hospital-acquired MRSA” or the coordination in “fresh or
dried fruit” versus “fresh fruit”. It also includes synapsies, which describe
small changes to the form of the words, for example the pluralisation of a
term.

• Morpho-syntactic Variations: Here the words may have the same root,
but they may be in a different form, or the syntactical structure of the
term may be different. An example of this is the change from N of N
to NN as in the “mouth cancer” example above, or change between the
use of a noun and its adjectival equivalent, for example “saline solution”
versus “salt solution”.

• Semantic Variations: These cover the case where one of the content
terms has been changed, for example “maize flour” and “wheat flour” are
related as there is a relation between “maize” and “wheat”.
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In addition to this there are also compound variations where several variations
may link one term to another. This methodology was applied to the extractions
of hypernym relationships in Morin and Jacquemin [2004], where they created
a set of transformational patterns to describe the common form of variations
and then applied them to a corpus. They found that most variations gave a
very high precision in identifying the relationships between specific terms and
reported precision values of 93.9% for syntactic variations, 71.2% for morpho-
syntactic variations and 80.5% for semantic variations. A similar attempt was
used to apply this method to synonym link discovery in Hamon et al. [1998], for
this they used a much stricter requirement that the content terms must be the
same or known to be synonymous (they used WordNet to decide this), and
they found a much lower result of 37%, but they point out that they had prob-
lem differentiating between synonymous term pairs and those which have other
relationships, such as hypernymy, meronymy, antonymy etc. Another attempt
to apply this methodology was explored in Bodenreider et al. [2001], where they
looked at only modification by a single adjective, and applied this to the medi-
cal thesaurus UMLS. They found that the relations split by modification were
about 4% indicative of synonymy, 43% indicative of hypernymy, 24% indicative
of “sibling” relation (both direct hypernyms of other terms), about 1% some
other relation, and 27% unrelated. They also found that for most terms, the
split between the different relations was quite high, which suggest that term
variation is not great for differentiating kinds of relationship.

The methods used in here require a large amount of manual analysis to create
patterns, which describe the transformations relating one term to another. A
simpler metric for relating terms was described in Nenadić et al. [2002], here
they viewed terms as a bag of words, so for example the term “orphan nuclear
receptor” is viewed as a set t1 = { “orphan”, “nuclear”, “receptor”, “orphan
nuclear”, “nuclear receptor”, “orphan nuclear receptor” }. They then describe
the similarity of two terms by

LS(t1, t2) =
|t1 ∩ t2|
|t1|+ |t2|

They found this to be useful in combination with metrics based on extrac-
tion patterns (à la Hearst [1992]) and distributional clustering. However this
simple approach cannot be expected to represent many of the variations seen in
Jacquemin [1999]. A more complex automatic method was presented in Ibekwe-
SanJuan [1998], here she grouped these transformations into a small number of
operations

• M-Sub(x,y) The replacement of a single modifier x with a new modifier
y.

• H-Sub(x,y) The replacement of the head of a term, x, with a new head
y.

• L-Exp(x) The insertion of a term x at the beginning of the term.
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• R-Exp(x) The insertion of a term x at the beginning of the term.

• Ins(x) The insertion of a term x in the middle of the term.

By using these transformations, she could describe a path that transforms one
term into another, then she takes a set of terms and then forms these into a
graph based on these terms and the relationships given between them. These
can be clustered to create sets of nodes, which have similar terms.

2.2.4 Term extraction

One of the methods I have not really mentioned yet is the identification of the
terms of interest from free text. Most of the papers already mentioned achieve
this by parsing the sentence and identifying the term as the noun phrase in the
parse tree, in English often dropping articles if present. This method is effective
and several systems have been developed that allow for doing this such as GATE
[Cunningham, 2004], however there are some alternative approaches, which are
worthy of consideration. In Bikel et al. [1997], they present a method based on
using a Hidden Markov Model to extract terms that would be of interest to a
specific task, and they found that their system scored a a high performance of
90-93%. This methodology is particularly useful when attempting to identify
certain types of terms in a domain, for example Collier et al. [2000] applied this
to the specific problem of extracting gene names, for which a tagger may fail as
it would not have many of the terms in its dictionary and their system scored
72.8% F-Measure on their corpus. Another method for selecting the terms that
are most relevant is that of Frantzi et al. [2000], which they call C-value this
selects terms based on their number of occurrences and also their number of
occurrences in a nested form. Firstly they tag the corpus with parts of speech
and then they identify the terms by using the following patterns

• Noun+ Noun

• (Adj | Noun)+ Noun

• ((Adj | Noun)+ | ((Adj | Noun)* (NounPrep)? ) (Adj | Noun)* ) Noun

Where NounPrep refers to a class of prepositions occurring in terms, such as
“composition of tears”. Once they have done this they select terms by the
C-value defined as

C-value(a) = log2|a|(f(a)− 1
|Ta|

∑
b∈Ta

f(b))

Where a is the term, |a| the length of the term, f(a) the number of occurrences
of the term in the corpus and Ta the set of terms of which a is a sub-string, e.g.,
if a = “real time” then “real time systems” ∈ Ta. The C-value is useful as it
increases the importance of terms which occur frequently in nested forms and
are likely to be of more importance than others.
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Summary

Extracting relationships between terms is the task of deciding if a particular
pairs of terms are related. There are three main approaches to doing this:
Patterns, Distributional Clustering and Term Variation. Patterns were first
suggested by Hearst [1992] and involve finding the terms in the same sentence
and in some “pattern” that is suggestive of a particular relation. These pat-
terns can be found either manually or automatically from a given a set of seed
term pairs. However as patterns rely on finding the two terms in the same
context, this limits the recall and ambiguity in the text can cause errors in the
extractions. On the other hand, patterns have the advantage that they can be
specialised for different relationships. Distributional clustering is the process of
seeing how a pair of terms are related by finding similarities in the contexts they
occur in. This method then requires a mathematical approach to determine the
clusters of terms which have a similar distribution of contexts. Distributional
clustering does not require that the terms occur in the same sentence or even
in the same document, hence it generally has a higher recall than pattern based
methods, however it is very difficult from distributional clustering to work out
the nature of the relationship between the terms, meaning that distributional
clustering is not suitable for extracting specific relationships such as if “X is
a causal agent of Y”. Finally Term variation, is a method that examines the
structure of the term and uses this to determine new variations of the term,
of which there are a number of such possible variations, from simple acronyms
to more complex modification. Term variation often has very high precision,
however as it relies on the structure of the terms being similar it cannot help to
identify relationships between terms with no similarity, for example, the synony-
mous terms “tuberculosis” and “consumption”. Term variation is also strongest
for finding if two terms are hypernymous however it can prove useful for some
other cases as well, e.g., consider the name of a virus like “HIV”, then there is
normally a causal agent relationship to the term made by adding “infection”,
i.e., “HIV Infection”

Method Precision Recall Applicability
Patterns OK Limited Produces specific results

for any relationships
Distributional Clustering OK Good Only produces a concept

of “semantic relatedness”
Term Variation Good Poor Strongest for hypernymy,

some use elsewhere

I also briefly looked at the problem of extracting terms from free texts,
mostly this is done by identifying the noun phrase through the use of a chunking
methodology. If it is required to identify which terms are more important the
C-Value of Frantzi et al. [2000] or the HMM based approach of Bikel et al. [1997]
can be useful.
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2.3 Forming Ontological Structures

I have so far looked at methods capable of extracting relationships from text or
determining the semantic similarity of terms, however this information would
generally be better if they could be stored in some kind of organised structure.
A clear example of the need for this can be seen if we consider the results of
hypernym relationship extraction by the use of Hearst’s pattern [Hearst, 1992]
and the organisation of terms in WordNet. Hearst’s patterns extract a binary
decision of whether a term pair is or is not hypernymous, where as WordNet
has sets of synonyms organised in a hierarchical structure. Näıvely adding
the binary extractions from Hearst’s patterns into the structure would cause a
number of problems, in that there may be missing links that would be suggested
by the transitivity of the hypernymy relation (for example the system might find
that “cat” is a type of “mammal” and “mammal” is a kind of “animal” but not
that “cat” is a type of “animal”) or other similar problems occurring from noise
in the extraction procedure. For this reason I will examine some methods that
can either extract the form of the structure in a single attempt or form the
extracted result into a given structure

Figure 2.5: A formal concept analysis
lattice. Terms in bold and concepts in
italics

In Cimiano et al. [2004], they use a
process called Formal Concept Anal-
ysis as a basis to form hierarchi-
cal structures, which starts by pars-
ing sentences and associating specific
terms with verbs, which the terms oc-
cur as the subject or object of. This
gives a set of concepts, which are as-
sociated with a given term, so for ex-
ample the term “car” might have the
concept set { “driveable”, “rideable”,
“bookable” }, they then form this into
a lattice structure8, such as the struc-
ture shown in 2.5. A hierarchy can
generally be reliably formed, giving a
taxonomy. This method has exponen-
tial time but the advantage that it is
possible to trace the reasoning for the
inclusion of each term in a particular
class. In Cimiano et al. [2005] the same authors compared their work to a more
standard approach of hierarchical clustering, which can be used to form a hi-
erarchical structure. This approach relies on calculating a similarity function
between different terms, this can be done in many ways, but they used a cosine

8A lattice is a set, S, with a partial order on the set and the set contains a unique supremum
and infimum, that is two elements >,⊥ such that ∀s ∈ S, ⊥ ≤ s ≤ >.
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metric, which when applied to concept sets becomes

sim(a, b) =
|Ca ∩ Cb|
|Ca||Cb|

Where Ca,Cb are the concept sets of a and b respectively.Then for a set of terms
P , define a split of this as the set as a pair of sets Q,R, such that P = Q ∪ R
and ∅ = Q ∩R and that Q,R are minimal with respect to

1
|Q||R|

∑
q∈Q,r∈R

sim(q, r)

By repeatedly applying this methodology a hierarchy can be obtained like in the
example of figure 2.6. These clusters can then be used to define a taxonomy by
including the terms, which have the same set of concepts into the appropriate
place in the hierarchy. This method has the advantage that it is much more
computable, in fact its complexity is O(n2log(n)), however it doesn’t produce
an outcome that is as easily traced.

Figure 2.6: Hierarchically clustering a
set by applying splits

These methods are certainly suit-
able for extracting hierarchical struc-
tures, however for more general com-
binations of multiple relations, some-
thing that can be more readily gen-
eralised is required. In Snow et al.
[2006] they use an approach which
forms the problem into a logical
framework. Initially they used the
methodology of Snow et al. [2004],
which I have already discussed to ex-
tract a large number of hypernym
pairs from a corpus. They then stated
that a taxonomy should have the fol-
lowing property known as transitivity

Hm
ij ∧Hn

jk → Hm+n
ik

Which states that if term i is a the nth ancestor of j and k is the nth ancestor
of k, then i is the (n+m)th ancestor of k. They then define a taxonomy, T , as
a set of pairs on a domain of objects, and state that based on the information
extracted from their pattern extraction system they have a probability value,
P (Rij ∈ T |ERij), which denotes the probability that a relation, Rij , is in the
taxonomy based on the linguistic evidence ERij . By applying some independence
assumptions and using Bayes Rule they state their problem as that of finding
the optimal network T̂ given by

T̂ = argmaxTP (E|T )
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Where E denotes all evidence and P (E|T ) is given by

P (E|T ) =
∏

Rij∈T

P (Rij ∈ T |ERij)P (ERij)
P (Rij) ∈ T

∏
Rij 6∈T

P (Rij 6∈ T |ERij)P (ERij)
P (Rij) 6∈ T

The value of P (Rij ∈ T ) and P (Rij 6∈ T ) can be set to make the model more or
less likely to include relations, however it is safest to set them to 0.5, unless there
is a strong reason that the model is over or under-fitting. They then defined
the change by adding a relation, Rij to a taxonomy T , as

∆T (Rij) =
P (Rij ∈ T |ERij)(1− P (Rij ∈ T )
(1− P (Rij ∈ T |ERij))P (Rij ∈ T )

They also define the implied set I(Rij) as the set of terms given by applying
the transitivity rule, that is that

Rjk ∈ I(Rjk)
Rim ∈ I(Rjk) if Rij , Rjm ∈ T ∪ I(Rjk)

The algorithm9 starts with T0 = ∅ and then finds the next step as Tn+1 =
Tn ∪ I(Rij), where Rij = argmax

∏
R∈I(Rij)

∆T (R). The algorithm continues
generating the next Tn, until it finds that P (E|Tn+1) < P (E|Tn). This algo-
rithm may not find an optimal solution, however its complexity is polynomial.
The authors found that by applying this methodology they could improve their
precision from 46% to 64% on a set of 10000 extracted links. This methodology
was also applied in Yates and Etzioni [2007] to the problem of extracting sets of
synonyms, here they used data extracted by the use of string similarity metrics
combined with distributional similarity data, to determine the probability of
a single relation Rij . As synonyms are naturally grouped into sets, instead of
relations one by one, they merge synonym sets. Merging is gaining a new set
from S from S1 and S2, by S = S1 ∪ S2, which can be considered identical to
adding all relations from the set {Rij , Rji|i ∈ S1, j ∈ S2}. Again they show an
increase in F-measure from 57% without merging synonym sets to 68%.

These systems are good for dealing with transitivity restrictions, which are
commonly found in ontology construction, but these methods are not suitable
for more complicated restrictions (for more discussion of this see sections 4.4
and 4.5). A model which is capable of dealing with a much wider range of
logical restrictions was used in the SOFIE system of Suchanek et al. [2009],
where they attempt to extract ontologies with multiple relations from free text.
Their system is based on pattern extraction, and they turn each of their pattern
extractions into a fact of the form:

patternOcc(“X went to school in Y”, Einstein, Switzerland)

They then presented a rule that allowed them to understand the usage of each
term

patternOcc(P,X, Y ) ∧R(X,Y )→ expresses(P,R)
9This algorithm is in fact a special case of Algorithm 4.3.2.3
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That is if pattern P appears between X and Y and we know there is a relation
R between X and Y , then it is possible to conclude that pattern P expresses a
relationship R. Similarly they have a reverse rule that says if they see X and Y
in pattern P and it is known that pattern P expresses R they conclude there is
a relationship between X and Y . These statements can all be formed and then
treated as a MAX-SAT problem: if there are a set of statements S then the
maximum satisfaction of them is an assignment of true/false to each term such
that the maximum number of statements in S are true given the assignment.
This problem is well-known and there exist many algorithms to solve it. An
advantage of this approach is that it is relatively easy to add more restrictions,
in their paper they present one such restriction

R(X,Y ) ∧ functional(R) ∧ different(X,Z)→ ¬R(X,Z)

Which states that if R is a functional relation, i.e., it is a many-to-one mapping
, for example if R = bornIn it is clear that it is not possible to have two objects
as a person can only be born in one place. It is also trivial to see that other
such restrictions could easily be added to the statement problem such as the
transitive axiom of Snow et al. [2006] which would translate to

R(X,Y ) ∧R(Y, Z)→ R(X,Z)

The disadvantage with this methodology is that MAX-SAT is a NP-hard prob-
lem and as such robust algorithms are required to solve the problem. Fur-
thermore, the MAX-SAT problem can only deal with restrictions, which can
be grounded to prepositional logic, and as such this methodology can’t handle
many of the first-order logic statements used in an ontology language such as
OWL.

2.3.1 MAX-SAT

As demonstrated in the works of Snow et al. [2006] and Suchanek et al. [2009], it
is possible to consider the problem of forming some arbitrary relation extractions
into a consistent network as one of finding a satisfaction of the constraints on the
network. In general these problems are called constraint satisfaction problems
and a survey of some of the approaches that can be taken is given in Kumar
[1992]. He associates most of the solution methods to these problems as a form
of tree search, as each constraint has several possible assignments that satisfy
it, hence each possible assignment represents a different branch. However as
choosing one assignment can lead to contradictions with other constraints, it is
necessary to backtrack frequently to solve most problems. He states that this
causes many problems to be intractable and as such a way to guide the search
towards a better solution is required. This is a wide subject and I shall discuss
one of the most general frameworks for solving this type of problem.

One formalisation, which I have already discussed is MAX-SAT, we shall
now formally define it.
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Definition: Suppose there is a set of variable P = {p1, . . . pn}, call a mapping
from P to {0, 1} an assignment. Define a clause as a set {q1, . . . qn,¬r1, . . .¬rm}
where qi ∈ P and ri ∈ P for all i, and say a clause is satisfied by an assignment
a, if there is some i such that a(qi) = 1 or a(ri) = 0. Suppose there is a set of
clauses C, a maximal satisfaction of C is a set C ′ ⊆ C such that there exists
some assignment, a, for which all clauses of C ′ are satisfied and C ′ is the largest
subset of C for which such an assignment exists.

This problem is NP-hard in most cases and several methods have been sug-
gested to solve. There is also a variation of this problem called Weighted MAX-
SAT, which assigns a weight to each clause and defines the optimal solution as
the one, which has largest sum of the weights of its satisfied clauses. A sim-
ple approach to both problems is branch and bound, which attempts to find
the assignment by choosing an assignment on a specific variable, and then by
branching on each assignment to each variable a search space is formed. It is
also possible to split the clauses into three groups by a partial assignment, that
is those which are satisfied by the partial assignment, those which are not satis-
fied but may be, that is still have unassigned variable, and those which cannot
be satisfied by the partial assignment, and it should be clear that this forms a
bounding condition to the search space. This means that once a solution has
been found that satisfies n clauses, it is possible to prune all branches of the
search space, which cannot satisfy n clauses. This algorithm can be further im-
proved by the variable selection of Davis and Putnam [1960], where they choose
the variable at each branch by choosing a variable from the unsatisfied clause
with the least unassigned variables.

A popular approximation method for MAX-SAT is the method of Selman
et al. [1992], known as GSAT or WalkSAT, this is an approximation method
and works as follows

1. Start with a random assignment.

2. For each variable calculate the “gain” of changing the assignment to that
variable, that is the number of clauses that would be satisfied by flipping
that variable minus those that would no long be satisfied.

3. Go to step 2, unless this is a local maximum (no flip has positive gain).

4. Repeat with a different random assignment.

This algorithm does not guarantee being able to find the maximum satisfaction,
however it is robust and efficient at finding a solution 10. A survey of algorithms
for MAX-SAT is given in Gu et al. [1996].

Summary

Relationship extraction systems generally give a binary decision of whether two
particular terms are related, however ontologies have a specific structure. As the

10Algorithm 4.3.7.9 is an adaption of GSAT
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relationship extraction system generally produces noisy and incomplete data, it
is highly unlikely that the result will be consistent with the structure of the
ontology. One approach is to design the system to extract an entire ontology
by the use of clustering, this can be done however the structures produce can
only be exact covers or hierarchies and as such are only suitable for a few
relationships such as hypernymy and synonymy. To deal with more complex
relationships and the interactions of multiple relationships, it is necessary to
rely on logical axioms that describe the structure of the ontology. This can be
done with special algorithms or by the use of an existing constraint satisfaction
problem algorithm such as those developed for MAX-SAT. In both cases this
leads to an NP-hard problem and hence strong algorithms are needed to produce
optimal/good solutions.



Chapter 3

Extracting relations

My first goal is to be able to extract a variety of different relations and to do
this I choose to base my method on that of Hearst [1992], as this methodology
can extract any kind of relationship from a text. However I do not wish to be re-
stricted to a manual definition of patterns, as these patterns may vary widely for
different domains and relationships. I make a key assumption throughout this
section that a “term” is a set of words that uniquely identifies a single concept.
This is not in general true as many terms are polysemous, i.e., they have several
different meanings. Depending on the domain, for which related term pairs need
to be extracted, it may be the case that nearly all terms uniquely identify a sin-
gle concept or there is some need to incorporate a sense identification method
into the process.

3.1 Patterns & Generalisation

I shall start with a simple problem that needs to be attacked before I approach
the problem of extracting information from text and that is the problem of tok-
enization. This is the methodology of splitting English text up from a sequence
of characters into a sequence of words. For the most part in English it is possi-
ble to use the simple methodology of splitting words by using white-space and
punctuation with exceptions for the following cases

• Apostrophe in proper names, i.e., “O’Reilly”

• Acronyms separated by periods, i.e., “I.B.M.”

• Numbers using comma and period separators, i.e., “1,000.00”

• Email addresses

This leads to the ability to write a very simple tokenizer, that splits by
punctuation and white-space unless it sees one of the special cases. I now define
patterns based on the words, which are treated as symbols.

33



34 CHAPTER 3. EXTRACTING RELATIONS

3.1.1: Definition Say there is a set of symbols Σ′, then define a special symbols
*. I define a set Σ = Σ′ ∪ {∗}, and a pattern as a sequence from the set Σ∗.

3.1.2: Definition Suppose there is a pattern p ∈ Σ∗ and a sequence of char-
acters s of length n, with si ∈ Σ′. It is said that p matches the sequence s, if
there exists some i, with 1 ≤ i ≤ n, such that for all j, with 0 ≤ j < |p|, either
pj = si+j or pj = ∗.

These definitions give a basic description of a pattern and how it matches,
normally I assume Σ′ is the set of all non-white-space sequences of characters,
and as such I can make patterns that match sequences of words. For example
the pattern

* is a * , which

Can match several contexts such as “a cat is a mammal, which”, and “a mammal
is a animal, which”. Assuming there is a given set of seed term pairs that are
examples of the given relationship then patterns can be simply extracted from
text by the following methodology

3.1.3: Definition If there is a sequence of symbols s, and a symbol σ, then
define the (m,n)-base set of patterns as

(m,n)-base-set(σ) = {si−m . . . si−1∗si+1 . . . si+n|si = σ}

Similarly define the (l,m,n)-base set of a pair of symbols σ1, σ2 as

(l,m, n)-base-set(σ1, σ2) = { si−m . . . si−1∗si+1 . . . si+m∗sj+1 . . . sj+n
|si = σ1, sj = σ2, j − i = m+ 1}

This is actually a simple definition that states that a base set of a pair
of symbols is in fact just found by finding the places in the text where the
occurrences are exactly m apart, and then creating a pattern by replacing the
chosen symbols with wild-cards elements, for example from the context

...types of felines such as cheetahs and lynxes...

If we chose as our pair of symbols (words), “feline” and “cheetahs”, then we
have the (2,2,2)-base pattern as

types of * such as * and lynxes

Then extracting these patterns gives the first approach for extracting informa-
tion from raw text. Figure 3.1 shows example of some of the patterns that can
be extracted from text, using parameters of (2, 8 ≤, 2), however these patterns
are often very specific to the context that they occurred in, including terms such
as “Ehlers” and “MTB”. This means that these patterns are very unlikely to
be reusable.
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• an established * and clear clinical symptoms , such as * , Ehlers

• an underlying * , such as an * or an

• forms of * ( TB ) such as * ( MTB

• forms of * of unknown cause, such as * and juvenile

• tuberculosis ( * ) such as * ( MTB

• types of * , such as * ( HD

Figure 3.1: Examples of base pattern extractions

3.1.4: Definition Define the match set of a pattern p as the set

match-set(p) = {s ∈ Σ′∗|p matches s}

Furthermore define a partial order on patterns by

p ≤ p′ ↔ match-set(p) ⊆ match-set(p′)

3.1.5: Lemma If p and p′ are two patterns then p ≤ p′ if and only if |p| ≥ |p′|
and there is some value i such that for all 1 ≤ j ≤ |p′|, p′j = pi+j or p′j = ∗.
Proof: The condition of the lemma states that “p′ is equal to a sub-sequence
of p, except any number of elements have been replaced by *”, it should be
clear that any such pattern matches at least the same sequences. If we assume
that this condition is not true, i.e., for some i, j p′j 6= ∗ and p′j 6= pi+j , then if
s ∈ Σ′∗ is a sequence that matches p and p′, which must exist as Σ′∗ contains all
possible patterns and hence match-set(p) 6= ∅, we can conclude that pi+j = ∗.
Hence by replacing the element of s corresponding to p′j truncating the match
we can get a sequence s′ which matches p but not p′, hence p 6≤ p′.�

This states that some patterns can be said to be “more general” or “less
general” than other patterns, by the criteria of how many matches they could
make on all possible inputs, and that this is actually just the result of replac-
ing symbols from one expression by the wild-card *. This allows for simply
generalising patterns by replacing terms with *, hence from a base pattern 2n

generalised patterns can be developed, where n is the number of non-wild-card
symbols in the pattern. As this is clearly a very large number a way to select
the patterns, which are most useful, is desirable. I will now define the patterns
in they way I wish to use them

3.1.6: Definition An extraction pattern is a pattern with at least two wild-
cards, * and I shall denote two of these wild-cards, *1 and *2. These are called
the extraction wild-cards
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This definition allows it to be stated, which two of the wild-cards, are used
to extract any relevant terms. I now present a method, which can be used to
extract results, this method starts not from the base patterns but instead starts
from a most general pattern

3.1.7: Definition The (l,m, n)1,2-supremum pattern is of the form

∗ . . . ∗︸ ︷︷ ︸
l times

∗1 ∗ . . . ∗︸ ︷︷ ︸
m times

∗2 ∗ . . . ∗︸ ︷︷ ︸
n times

Similarly the (l,m, n)2,1− supremum pattern is the same except the extraction
wild-cards are switched. Call the (l,m, n)-supremum pattern set the set given
by

{(i, j, k)1,2-supremum, (i, j, k)2,1-supremum|0 ≤ i ≤ l, 0 ≤ j ≤ m, 0 ≤ k ≤ n}

I now present a pattern generation algorithm.

3.1.8: Algorithm
Input: A corpus, that is a sequence of symbols s, an evaluation function e, and
pattern boundary numbers (i, j, k), and an iteration limit n.
Output: A set of patterns.

1. Initialise P as the (i, j, k) supremum pattern set.

2. While P is not empty and the iteration limit n has not been reached

(a) Select p ∈ P which is maximal in P relative to e(p), and has not
already been selected.

(b) Find all matches in s to p, and for each case where a wild-card in p
matches to a symbol σ add a new pattern p′, which is identical to p
except the wild-card has been replaced by σ. Remove p from P .

Figure 3.2: Example search space of al-
gorithm 3.1.8

This algorithm covers the search
space as illustrated in figure 3.2,
and can generate most of the high-
quality patterns given a good evalu-
ation methodology for the patterns,
however as this system covers every
possible variation of the patterns the
the search space is far too large to
be tractable. So it is necessary to
find a way to cover this search space
more efficiently by either prioritising
“better” patterns or by skipping those
patterns which are too similar to ex-
isting patterns.
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3.1.1 Evaluation Functions

One of the key issues with pattern generation is that it is easy to generate a
very large number of patterns, however there is no clear way of evaluating their
effectiveness, for this some kind of metric is needed. There are a number of
things which can be measured:

• The total number of sub-sequences a pattern matches

• The number of these matches which correspond to known term pairs

• The number of term pairs matched by some sub-sequence.

I will call these the total matches, correct matches and omitted terms. One
of the simplest metrics is to simply choose patterns, which have the highest
percentage of correct matches to omitted matches, call this the precision of the
pattern

eprecision =
#Correct Matches
#Total matches

This metric is good but it favours patterns, which are too specific, for example
a pattern that matches a single correct subsequence would have 100% precision.
As such I will also define the recall of the pattern as

erecall =
#Term Pairs Matched

#Term Pairs

This metric is also flawed as in this case supremum patterns must have the
highest recall. As such it is desirable to find a metric that gives a balance
between the two results, I use the commonly used metric called F-Measure,
which is a weighted harmonic mean, that is

eF -Measure =
1 + α

1
erecall

+ α
eprecision

=
(1 + α)erecalleprecision
αerecall + eprecision

This metric needs a parameter α which sets how much to value precision over
recall (or vica versa if α < 1). This metric also has the property of only giving
100% if both recall and precision are 100% and 0% if either are 0%.

While F-Measure is often useful, the problem of finding a suitable value for
α is difficult and as such it would often be preferable to have a metric that gives
a clearer guarantee of finding strong patterns. Define the support of a pattern
by the number of term pairs it matches, the support threshold as a value n, and
then the minimum-support metric is given as

emin−support =
{
eprecision if support > n
0 otherwise

This metric has the advantage of being simpler, and choosing only patterns
that are sufficiently general, while still valuing those patterns which are most
accurate.



38 CHAPTER 3. EXTRACTING RELATIONS

Summary

Patterns can easily be defined on tokenized texts and by introducing a wild-card
symbol which matches any single token, these patterns can be generalised in a
number of ways. Furthermore, by looking at the set of all possible sequences
of tokens a pattern can match it is possible to define a match set, which leads
to a partial order on patterns. I then present an algorithm, which starts with
the most general pattern, that is the pattern consisting of only wild cards,
and develops a more specific pattern by replacing wild cards with terms from
some corpus. I then presented two metrics, which are capable of evaluating the
effectiveness of a pattern, taking into account both its accuracy and its coverage.

3.2 Rules and Join-sets

3.2.1 Rules

One of the problems with the patterns so far has been the inability to handle
multi-word terms; to handle this effectively it is required that there are identified
boundaries of the terms. In addition a more complex rule language is required
to handle these terms. I approach the goal of finding terms as that of finding
noun phrases, and this requires a part-of-speech tagging of the corpus. My
method starts by using the well-known statistical tagger BRILL [Brill, 1992],
then following the approach of Frantzi et al. [2000] I use the following simple
pattern to identify the areas of interest, henceforth known as entities

entity = (NN |JJ |NNS|NNP |FW |NNPS|JJR) ∗ (NN |NNS|NNP |NNPS)

For reference these tags are

• NN: A singular noun

• NNS: A plural noun

• NNP: A proper noun

• NNPS: A pluralised proper noun

• JJ: An adjective

• FW: A prefix, such as “pre-” or “non-”

• JJR: An adjective in comparative form

Note I include JJR as terms such as “lower” or “upper”, are often found in the
dictionary form of terms, but not JJS, which means an adjective in superlative
form, such as “lowest”, as this rarely occurs in dictionary forms. I then define
a rule language based on a subset of the SRL language1

1Available at http://srl-editor.googlecode.com/
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3.2.1: Definition Define a rule as a sequence of matchers where the matchers
are

• A literal: Denote this as "σ". This matches only the symbol σ.

• A word region: Denote this as words(n,m), where n,m ∈ N , this matches
a sequence of symbols, s, if n ≤ |s| ≤ m

• An entity: Denote this as name(), this matches a sequence of symbols
which constitute an entity.

As before say a rule matches a sequence of symbols if each of its matchers match
the sequence when applied in order.

For example taking the pattern

*1 * such as *2

Gives us a rule

:- name() words(1,1) "such" "as" name()

I quickly make a few definitions to simplify the operations with these rules.

3.2.2: Definition Denote the ith matcher of a rule as ri, and the length of the
rule as the number of matchers it contains, denoted |r|. Two rules are equal if
their match-set as in definition 3.1.3 is the same. A rule is well-limited, if its
first and last expressions are an entity, a literal or a words(m,n) element with
m = n and n 6= 0.

3.2.3: Lemma For every rule r there is an infinite set eq(r) = {r′|match-
set(r) = match-set(r′)} and there is a unique well-limited element rs ∈ eq(r)
such that |rs| < |r′| ∀r′ ∈ eq(r), this rule is the simplified form of r.
Proof: This is based on the fact that an element :- words(n,m) has the same
match-set as :- words(n′,m′) words(n′′,m′′) if n′+n′′ = n and m′+m′′ = m.
From this it is clear that two rules have the same match-set if their literals and
entities are in the same order and the sum of all the consecutive word regions
are equal. The simplified form is then the one which has no consecutive word
regions and no words(0,0), and the set eq(r) is infinite as it is possible to
include any number of words(0,0), without affecting the match-set.�

These two statements allow us to talk about rules as being unique elements
based on their match-set, which helps cut down the amount of work necessary.
For example, the rule

:- words(1,2) name() words(0,1) words(2,3) "literal" name()

Can be simplified to the following form

:- words(1,1) name() words(2,4) "literal" name()

Without affecting the set of sentences it could match.
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Figure 3.3: Example of an alignment

3.2.2 Join-set

These more complicated rules could be used with the methodology I have already
discussed, however I will present a more complex but efficient method based on
join-sets.

3.2.2.1: Definition If there are two rules, r1 and r2 and there is a partial order
on these elements as in definition 3.1.3, then a rule, rj , is a join of r1 and r2
if it holds that r1 ≤ rj and r2 ≤ rj and there does not exist some rule r′, with
r1 ≤ r′ and r2 ≤ r′ and r′ < rj . Call the set of all joins of r1 and r2 the join-set
of r1 and r2.

It is now necessary to find an easy way to calculate the join-sets of a pair
of rules. Fortunately for the form of rules I presented before, this is not excep-
tionally hard, if the method focuses on the literals of the expression.

3.2.2.2: Definition Define an alignment of two rules, r and r′ as a set of pairs
A = {(i, j)}, with 1 ≤ i ≤ |r| and 1 ≤ j ≤ |r′|, and there is no two pairs
(i, j) ∈ A and (i′, j′) ∈ A with i = i′ or j = j′, or i > i′ and j < j′, and for all
(i, j) ∈ A ri is the same as rj . Furthermore if ri is an entity expression, then
(i, j) ∈ A for some j and similarly if rj is an entity expression, then (i, j) ∈ A
for some i.

This states that an alignment is a mapping of the expressions such that the
entities match up, and this match does not contain any “crossing” matches, that
is if the third element of the rule matches to the fifth element of the other rule,
then the fourth element must match to an element after the fifth of the other
rule. In figure 3.3 there is an example of an incorrect matching between the two
“also”s as this matching crosses other matches. I can now derive a result about
the relationship between joins and alignments
3.2.2.3: Definition Define the span of a rule, r or sub-sequence of a rule as a
pair of integers (m,n), given bym = mins∈match-set(r)|s| and n = maxs∈match-set(r)|s|.
Denote that as

(m,n) = span(r)
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For rules and
(m,n) = span(r, i, j)

Sometimes I need the span of the sub-sequence of r, from the ith element to the
jth, excluding the ith and jth element. Hence, define the co-span of two rules
as

co-span(r, r′) = (minσ∈match-set(r)∪match-set(r′)|σ|,
maxσ∈match-set(r)∪match-set(r′)|σ|)

And for convenience define the co-span of two sub-sequences of r between the
ith and jth element and r′ between the i

′th and j
′th element as a function co-

span(r, i, j, r′, i′, j′).
It should be noted that for the most part span is very easy to calculate as for

words it is given by the two parameters and for literals it is (1, 1), for entities it is
defined as (1,∞), and the span of a rule or sub-sequence is simply the sum of all
elements involved. The co-span is useful as it states the maximum and minimum
number of terms that can be covered by both rule or rule sub-sequences

3.2.2.4: Definition Assume A is an alignment between two rules r,r′

A = {(i1, j1), . . . (in, jn)} where i1 < . . . < in

Define the alignment-to-join conversion of A as a rule rA is a rule of length
2n+ 1 with

rAm =


words(co-span(r, 0, i1, r′, 0, j1)) m = 0
words(co-span(r, in, |r|, r′, jn, |r|)) m = 2n+ 1
words(co-span(r, i(m−1)/2, i(m+1)/2, r

′, j(m−1)/2, j(m+1)/2)) m is odd
rim/2 m is even

This is actually quite easy to perform, as rA is in fact the rule with all aligned
elements preserved and in between each element a words element is introduced
that matches the same possible spans as the combination of the two other rules
for example if we have rules

:- "a" name() "b" "c" "d" name()
:- words(,1) name() words(2,3) "c" name()

And we have the following alignment on these rules

{(2, 2), (4, 4), (6, 5)}

Then we can get the alignment-to-join conversion as

:- words(,1) name() words(2,3) "c" words(0,1) name() words(0,0)

Which in simplified form is

:- name() words(2,3) "c" words(0,1) name()
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3.2.2.5: Theorem The alignment-to-join conversion of two rules r,r′ by align-
ment A, rA is a join of r,r′ or there exists a join of r and r′, r′′ such that
r′′ ≤ rA.
Proof: It is simple to observe that, as every introduced words has its match-set
given by the co-span of unaligned elements, and all aligned elements are in rA,
we have that the match-set of rA, contains both the match set of r and r′ hence,
rA is either a join of r and r′′ or subsumes some join of r and r′′.�

3.2.2.6: Theorem If there are two rules r and r′ and rJ is a join of r and r′,
then there is an alignment of r and r′, A, such that rA = rJ .
Proof: It should be clear that every element in rJ that is either a literal or
an entity must have corresponding elements in r, r′. This can be observed by
observing that if we have a set Mσ given by the set of sentences consisting of
the literals and entities of rJ in order with any number of σ inserted at any
point, where σ is a symbol not mentioned by any literal in rJ or r or r′, then
the matches in Mσ∩match-set(rJ) can be consistently mapped to the matchers
of rJ and r, r′. This consistent mapping can then simply give an indexed
alignment.�

3.2.2.7: Corollary If A(r,r′), are all possible alignments of r and r′ then it
follows that

{rA|A ∈ A(r,r′)} ⊇ join-set(r, r′)

It is easy to find join-set(r, r′) by taking {rA|A ∈ A(r,r′)} and removing
all rules that subsume other rules. This gives the main result for generating
generalised rules, in that it is only necessary to calculate all valid alignments
between two rules, in order to calculate the join-set. As this the rules which
minimally match both the same sentences that both rules do.

3.2.2.8: Algorithm
Input: Two rules r,r′.
Output: A(r, r′), the set of all alignments of r and r′.

1. First find all entities in r and match them sequentially to the entities r′,
to get entity-base, if this cannot be done or does not cover all the entities
of r′, return: ∅.

2. For each literal in r, find all equal literals in r′, call this literal − base.

3. return: find-aligns(entity-base,literal-base), where

find-aligns({a1, . . . , an}, B) =


{a1, . . . , an} ifB = ∅
find− aligns({a1, . . . , an,
valid(a1, b), . . . valid(an, b)},
B − {b}) for some b ∈ B
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and

valid({a1, . . . am}, b) =


{a1, . . . am, b} if 6 ∃ai such that ai = (i, j),

b = (i′, j′) and i > i′, j < j′

or i < i′, j > j′

null otherwise

The advantage to this is that if there is a corpus, which as before is viewed
as a sequence of symbols s, then it is possible to talk about the matches to
this corpus of a rule match-sets(r). Furthermore if some of these are “correct”
extractions, a set of correct possible matches in the corpus, correct-matches(s),
can be defined (this is a subset of all possible sub-sequences in s). I can now
state a key result

3.2.2.9: Definition Define the base rules of s as a set of rules defined by for
each s′ ∈ correct-matches(s) a rule rs′ , which matches s′ and is minimal, that
is there exists no r′, which matches s′ and has r′ < rs′ (note this has to exist
as the rule is the shortest one made of literals and entities). Also define the
completed join-set of a set of rules R = {r1, . . . rn} recursively by

• ri ∈ completed-join-set(R).

• join-set(r, r′) ⊆ completed-join-set(R), if r, r′ ∈ completed-join-set(R)

3.2.2.10: Theorem Assume there is a set of base rules, Rs = {rs1 , . . . rsn
} as

in the previous definition. Suppose there is a rule r ∈ completed-join-set(Rs)
and another rule r′ ∈ completed-join-set(Rs), with r < r′ and there is no
r2 ∈ completed-join-set(Rs) such that r < r2 < r′. Then there is no rule r′′

such that

match-set(r) ∩ correct-matches(s) ⊂ match-set(r′′) ∩ correct-matches(s)
⊂ match-set(r′) ∩ correct-matches(s)

Proof: Assume this is not true, then there exists some s′, which matches r′ and
r′′ but not r, as it is a correct match there is also a base rule rs′ . This means
we must have that r′′ is in the join-set of r and rs′ hence r′′ ∈ completed-join-
set(Rs).�

This theorem states the idea that rules, which are not joins of some of the
base rules, correspond to all valid ways to match that capture new examples
from the training data. This is useful as it cuts the amount of work necessary
to search the space of possible rules which may turn out to be very large. As
such I can now present my algorithm as follows

3.2.2.11: Algorithm
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Input: A corpus s, with training examples correct-matches(s).
Output: A set of rules R.

1. Initially let the rule queue, Q, be Q = base-rules(s), R = ∅.

2. While Q 6= ∅

(a) Take some r ∈ Q, Q← Q− {r}.
(b) For each r′ ∈ Q let Q← Q ∪ join-set(r, r′).

(c) R = R ∪ r

This algorithm is more effective than algorithm 3.1.8 as it is limited to only
those rules, which differ significantly, as far as can be known from the corpus
and seed term pairs. It is clear that it is possible to improve this algorithm by
including a heuristic cost function as described in section 3.1.1, and in step 2a of
the algorithm choosing r as the rule that has the best heuristic value. However
often the join-set method can cut the search space to the point that all possible
rules can be extracted.

3.2.3 Join-sets for more complex languages

An advantage of the join-set is that is easily adaptable to much more complex
rule languages, for example SRL has several other matching elements

• Word lists: This element matches a predefined set of terms, for example
a list of country names.

• Orthographic: This element matches a term based on its orthographic
properties, for example, all capitalised, initial capitals, numeric terms,
writing system (Hiragana, Katakana, etc.)

• Begins,Ends,Contains: Matches a single word, that begins in, ends in
or contains a given sub-string.

• Optional: This matches a given term if it appears, or a zero-width match
if the term is not present.

These can be automatically created by the use of join-sets in a similar manner
to the previous method, however if there are two terms that don’t match exactly,
they don’t necessarily create a wild-card (words) element. Using the matchers
defined above it is possible to define the concept of matchable terms as

• If two terms are in the same word-list they are considered matchable

• If two terms have the same orthographic properties, based on a pre-defined
list of relevant orthographic properties they are matchable.
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• If two terms contain the same sub-string, they are matchable. In practise
it is sensible to assume that this sub-string has a minimum length

Then it is possible to modify algorithm 3.2.2.8 so that it creates alignments
based not on what literals are equal, but on which literals are matchable. Then
the alignment-to-join conversion function of theorem 3.2.2.5, is also modified
so that it checks if the literals are matchable and if they are, it inserts an ap-
propriate matching element that generalises both of these. In fact, it is also
theoretically possible that non-literal elements may also be matchable, for ex-
ample the list of countries could be generalised into the orthographic matcher
for initial capitalisation, as in English all country names are proper nouns and
start with a capital letter. The key here is that as long as it is possible to define
the minimal join of any one element, then it is possible to generalise this into
the minimal join of any rule, through the use of an alignment.

Summary

Figure 3.4: Example of a classification
problem. The points represent train-
ing variable in two classes marked with
green circles and blue crosses. The red
line marks the decision boundary be-
tween the two classes

Handling the problem of identifying
multiple word terms, requires that the
text be parsed and the terms iden-
tified through the use of a chunk-
ing methodology. This leads to more
complex “rules”, which I take from
the SRL language. With these rules I
approach a more complex methodol-
ogy through the use of a join-set de-
fined as the minimal set of rules which
subsume a pair of rules. I show two
key results about join-sets, firstly that
they are readily calculated by finding
alignments of the two rules. Secondly
after defining the base rules as those
which have no wild-cards, I show that
the semi-lattice given by the join-sets
of all base rules, represent all rules
which could have some difference in
precision over the corpus. This means
that any pattern not in a join-set of
some base patterns is not useful for
my method.

3.3 Classification

Once a rule set has been generated, some way to deduce whether a particular
pair of terms are synonymous is required. My results and those of other authors
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such as Snow et al. [2004] show that in general most rules are not very accurate
at finding term pairs. To get around this I use a process known as classification.
I shall first briefly recap the definition and several important algorithms for
classification.

3.3.1 A brief introduction to classification

Assume there is some vector space X , and two variable Y1 and Y2, which give
probabilities of a vector x, as P (x|Y1) and P (x|Y2) and there are also prior
probabilities of the events P (Y1) and P (Y2). The goal is from a chosen data
vector x to determine if it is more likely that this vector comes from Y1 or Y2

that is whether P (Y1|x) > P (Y2|x). By Bayes rule this can be reformulated as

P (x|Y1)P (Y1) > P (x|Y2)P (Y2)

Figure 3.5: An example of the applica-
tion of margin based classification, the
green lines marks the decision boundary
and its margin. The red line is another
decision boundary with a small margin

A simple example is that Y1 is
the event that a person is male and
Y2 the event that that person is fe-
male. Then if X has vectors cor-
responding to facts such as height,
weight, etc. it is possible to use this to
guess if the person is male or female.
This problem is easy if the probabil-
ity functions are known, but instead
I shall assume they are not and in-
stead there are a number of exam-
ples {(x1, y1), . . . (xn, yn)} which are
called training data, for example xi
may be a sample of some random peo-
ples height, weight etc. and yi is
whether they are male or female.

As this probability function is
very difficult to estimate, it is com-
mon to make some form of indepen-
dence assumption, for example in the
Naive Bayes classifier, the assump-
tion is that

P (x|Y1) =
∏

P (xi|Y1)

This is then requires finding a probability distribution for each P (xi|Y1). This
can be done by assuming that xi|Y1 ∼ N(µ1, σ

2
1) and xi|Y2 ∼ N(µ2, σ

2
2). Then

the prior probabilities of P (Y1) can easily be estimated by the number of ex-
amples in the training data that have the class value y1, and standard methods
can be used to estimate µ1, µ2, σ1 and σ2. This method is effective for many
forms of data when the assumption that the data is distributed normally is
approximately correct, however it cannot deal with more complex distributions.
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Another approach is instead of attempting to calculate the probability dis-
tributions relying on finding the line where

P (x|Y1)P (Y1) = P (x|Y2)P (Y2)

There are a number of methods that approach the problem in this way,
one that is of particular interest is called margin classification, these methods
attempt to find a straight line that splits the data set so that each data point
is as close to the line and on the right side of the line as frequently as possible.

This can be thought of in terms of a margin, that is the amount of sepa-
ration between the two classes, for an example see figure 3.5, which shows two
sets of data, and two potential decision boundaries, both of which divide the
points correctly. However the red line has no margin, that is there is no gap
between the classes, where as the green line has a large margin, denoted by the
two dashed lines. One of the most well known forms of margin classification
is known as support vector machines (see Cortes and Vapnik [1995]), support
vector machines allow the margin to be defined by a set of support vectors,
within a margin of the decision boundaries. Furthermore, the computational
form of a SVM allows for it easily be adapted to find non-linear boundaries,
by using the fact that the distances between vectors is calculated by their dot
product. The methods of an SVM allow this dot product to be replaced with a
function called a kernel, which is a Gaussian radial basis function, and performs
the same function in calculating distances. But as the distances are now non-
linear, a non-linear boundary is obtained, for example a commonly used kernel
is a simple polynomial

k(x,x′) = (x · x′)d

Figure 3.6: The inverse logit function

While this is effective, often not
just a decision boundary but instead
an actual estimate of the probabil-
ity is required. For this reason a
method called Logistic Regression is
used, which is based on using the fol-
lowing assumption

P (Y1|x) =
1

1 + e−z

Where

z = β0 + β1x1 + . . .+ βnxn

This is useful as it represents the kind
of data found from a multivariate bi-
nomial distribution because it is the
distribution’s link function as a gen-

eralised linear model (for more discussion of this see Hastie et al. [2001]). This
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method is very useful as it gives a much more accurate prediction of the proba-
bility that a data point belongs to a certain class. This method can be incorpo-
rated with support vector machines, to give a system that can both accurately
predict probabilities and produces strong predictive results.

Figure 3.7: An example of a decision
tree

Another classifier that is com-
monly used are those based on deci-
sion trees. This attempts to form a
tree that can be used to decide which
class the data belongs, for example
see the tree in figure 3.7, this tree
first checks to see if variable x1 is
greater than or less than 0.555, then
it branches to the next stage that
checks x2. There are various methods
for constructing such trees, for exam-
ple see the C4.5 method of Quinlan
[1993]. For a more complete introduc-
tion of decision trees and other top-
ics in classification see Hastie et al.

[2001].

3.3.2 Finding term pairs by classification

Now that the set of rules has been found, it is possible to find all places where
they match in the corpus and extract a set of term pairs from the corpus. For
each of these term pairs it is possible to extract the number of times it matches
to each rule, and use this as the training data.

3.4.2.1: Definition Let the set of extracted rules be P = {p1, . . . pn} and
the term pairs T = {(t1, t′1), . . . (tm, t′m)}, for each term pair create a vector
xi = (xi1 . . . xin)T , such that xij is the number of matches of rule pj to term
pair (ti, t′i).

Now that vectors have been obtained, it is necessary to train the classifier.
For this it is required that there is some classifications as to which of these
rules are positive or negative. This could be done by using an oracle such as
WordNet, defining yi = 1 if this term pair is known to exhibit a relationship,
yi = 0 if both terms are in the oracle but no relationship is marked, and all
vectors from the training set, whose term pairs are not in the oracle are removed.
Alternatively given the seed pairs used to extract the rules, if it is assumed that
no two terms from different seed pairs share a relationship it is possible to use
this as an oracle. Once these have been extracted, they can be used to train a
classifier such as the ones I talked about above. Then use this on any vectors
where the class value is not known on to produce a probability that that pair
exhibits the relationship. Further more it is also necessary to classify the zero
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vector, a vector that has all zeros, as the probability of this is given as a base
line for term pairs for which no rules match in the corpus. So:

• For term pairs, (t1, t2) in the oracle P (r(t1, t2)) = 1.

• For term pairs, (t1, t2) not in the oracle but with both t1 and t2 in some
other term pair in the oracle P (r(t1, t2)) = 0.

• For term pairs, (t1, t2) with one term not in the oracle and a vector x,
P (r(t1, t2)) = P̂ (x), where P̂ is the statistical classification system

• For all other term pairs, (t1, t2),P (r(t1, t2)) = P̂ (0).

Summary

I briefly introduce the concept of classification, which is a statistical method
for classifying vectors into a number of classes based on some previous training
data. I then relate this to my problem by showing how to generate vectors from
generated rules and corpus and explain how this can be combined with a classifi-
cation system to produce a probability value for each term pair, which indicates
how likely it is that a given term pair is related by a specific relationship.
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Chapter 4

Logical consistency of
Ontologies

4.1 Defining the Problem

4.1.1 Networks

The problem concerns a set of elements, which are the terms extracted by the
process in the previous section, define d as a finite set, E. There are also a
finite number of relations on this set, which is defined as a 2-ary predicate on
the set E, I write r(e1, e2) to denote the relationship r between to elements e1,
e2. Then define a network as a set of such statements, and the set of possible
relationships as the set R.

4.1.1: Definition N(E,R) is the set of all possible networks on the set of
elements E and relationships R. Define N as N = {ri(ej , ek)|ri ∈ R, ej ∈
E, ek ∈ E} and as such it is clear N(E,R) = P(N ).

Furthermore, define the set of valid networks, V ⊆ N(E,R) to be some
subset of the possible networks. Also define a cost function as follows

4.1.2: Definition c : N(E,R)→ R is a cost function if it satisfies the following
axioms

1. c(N) ≥ 0 for all N ∈ N(E,R)

2. c(P ) = 0 for some P ∈ N(E,R) and c(N) = 0 iff N = P for all N(E,R)

3. If N 	 P ⊆M 	 P then c(N) ≤ c(M) for all N,M ∈ N(E,R) 1

Call this value P the minimal of the cost function

1I define S 	 T ≡ (S ∪ T )− (S ∩ T )

51
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The last axiom is intended to ensure that the metric is calculated only from
the sections of the networks which actually differ. I now state the problem as
such

4.1.3 Definition Define a consistency satisfaction problem as a tuple (E,R, V, c),
which has that V ⊆ N(E,R) and c is a cost function as in definition 4.1.2. I
say that a solution to this problem is a network N such that N ∈ V and there
does not exist N ′ ∈ V such that c(N) > c(N ′)

Note that under this definition there may not be a unique N , for the purpose
of the system if N is not unique these solutions are “indistinguishable” and the
system can do no better than choosing a single one at random, so it is only
required that an optimal solution is found.

4.1.2 Cost functions

Assume that there is a probability distribution over N(E,R) so that for each
N ∈ N(E,R) a value p(N) can be calculated. Assume there is some value P ∈
N(E,R) such that there does not exist P ′ ∈ N(E,R) such that p(P ) ≤ p(P ′),
then I define the cost function as

c(N) = log(p(P ))− log(p(N))

It is clear that this function satisfies axiom 1 and 2 of the cost function definition
and that this function increases as p(N) decreases. However it may not always
satisfy the third axiom of the definition 2.

4.1.2.1: Definition Define p : N(E,R) → R as a function such that 0 ≤
p(r(e1, e2)) ≤ 1 for all r(e1, e2) ∈ N(E,R) I shall say that a network is inde-
pendently generated, denoted N ∼ Ind(p) and has the following probability
distribution function

p(N = N1) =
∏

r(e1,e2)∈N1

p(r(e1, e2))
∏

r(e1,e2)/∈N	N1

(1− p(r(e1, e2)))

As a corollary it is clear that P is defined as

r(e1, e2) ∈ P ↔ p(r(e1, e2)) > 0.5

4.1.2.2: Lemma If N ∼ Ind(p) then c(N) = log(p(P )) − log(p(N)) is a cost
function.
Proof: It is easy to show that c(N) is positive and c(P ) = 0.

c(N) = log(
∏
r(e1,e2)∈P p(r(e1, e2))

∏
r(e1,e2)/∈N̂	P (1− p(r(e1, e2))))

−log(
∏
r(e1,e2)∈N1

p(r(e1, e2))
∏
r(e1,e2)/∈N̂	N1

(1− p(r(e1, e2))))
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Hence it follows

c(N) =
∑

r(e1,e2)∈P	N

(log(p(r(e1, e2)))− log(1− p(r(e1, e2))))

So it is clear that the third axiom holds.�

Summary

I start by assuming that there is a set of elements and some set of relation-
ships between them and that the pattern-based extraction systems of chapter 3
produce a single probability that any of these elements are related by a given
relationship. I define a network as a set of these relations (in effect it is a multi-
relation graph), and I state that a subset of all possible networks are considered
valid. I define a cost function on a network and show that given a reasonable in-
dependence assumption, this leads to a linear function based on the probability
values from the pattern-based extraction system.

4.2 Equivalence sets

For the first case I shall define this problem only in terms of equivalence sets,
this is useful when dealing with a single relationship that is an equality relation
such as noun synonymy.

4.2.1: Definition An exact cover is defined a set of subsets of a set E such
that, if C = {C1, . . . Cn} then

1. For all e ∈ E, ∃i such that 1 ≤ i ≤ n and e ∈ Ci

2. For all i, j such that for 1 ≤ i < j ≤ n, Ci ∩ Cj = ∅

Define an equivalence network, N , derived from an exact cover, C, as a network
over a single relationship r and such that r(e1, e2) ∈ N if and only if ∃i such
that 1 ≤ i ≤ n and e1 ∈ Ci and e2 ∈ Ci.

More informally defined, an exact cover is a division of the elements such
that each element is in exactly one set. In the equivalence problem I define the
set V as the set of all equivalence networks, that is a network is only valid if it
represents an exact cover. As such it is possible to define the equality system
as such

4.2.2: Definition If N ∼ Ind(p) and V is the set of the equivalence networks,
the problem can be redefined as: find an exact cover of C = {C1, . . . Cn} such
that C is maximal with respect to

∑
i=1...n c(Ci) where

c(Ci) =
∑
e1∈Ci

( ∑
e2∈Ci

log(p(r(e1, e2))) +
∑

e2∈E−Ci

log(1− p(r(e1, e2)))

)
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This means that if N is network given by C, it follows that

c(N) = log(p(P ))−
∑
i1,...n

c(Ci)

Hence the goal of minimising c(N) is the same as maximising
∑
i1,...n

c(Ci)
For simplicity I shall assume that E = {e1, . . . en} and then define the inter-

node cost, cij as

cij = log(p(r(ei, ej)))− log(1− p(r(ei, ej)))

4.2.3: Lemma If C0 = {{e1}, . . . {en}} then

c({C1, . . . Cm}) = c(C0) +
∑

i=1,...m

∑
{j,k}⊆Ci

cjk

Proof: It is simple to observe that

c(C0) =
∑

e1,e2∈E
log(1− p(r(e1, e2)))

Hence by adding cjk it is possible to get the same expression as in definition
4.2.2.�

From this point treat c(C0) as a constant and ignore for the purpose of my
algorithms.

4.2.4: Definition Define a linear equivalence problem as a tuple (E, r, {cij})
such that the goal is to find an exact cover of E, {C1, . . . Cm} which maximises
the value of ∑

i=1,...m

∑
{j,k}⊆Ci

cjk

4.2.1 Branch and Bound algorithms

The simplest approach is to find the set cover by adding elements one by one
to the set

4.2.1.1: Algorithm
Input: A linear equivalence problem (E, r, {cij})
Output: An exact cover of E, {C1, . . . Cm}

1. Initially C = {}, E′ = E

2. While C is not an exact cover

(a) Take ei ∈ E′, assume C = {C1, . . . Cn}. Let k be the maximal
argument value of

∑
ej∈Ck

cij and c be this value.
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(b) Let E′ ← E′ − {ei}
(c) If c < 0 then let C ← C ∪ {Cn+1} where Cn+1 = {e1} otherwise let

C ← {C1, . . . Ck ∪ {e1}, . . . Cn}

This algorithm works by starting with an empty cover and taking each ele-
ment one by one and adding it to an existing set or a new set by itself according
to which one would cause the least increase in the cost.

4.2.1.2: Example Take E = {1, 2, 3} and the following values for cij

cij =

1 2 3
1 0 −1 2
2 −1 0 3
3 2 3 0

• Iteration 1: Take e = 1. We cannot define c so we get C = {{1}} and
E′ = {2, 3}

• Iteration 2: Take e = 2. We get c = −1 and hence so we get C =
{{1}, {2}} and E′ = {3}

• Iteration 3: Take e = 3. We get i = 2 and c = 3 and C = {{1}, {2, 3}}
with a total overall cost of 6.

However the solution of C = {{1, 2, 3}} has a higher cost of 8 so this is not
the optimal. This demonstrates that algorithm 4.2.1.1 cannot be used to find
the true optimal solution, but this can be performed by a branch and bound
algorithm. This is done by branching whenever the algorithm would choose to
add an element to a set in the cover. First I define a simple bounding condition

4.2.1.3: Definition Let
C>0 = {cij |cij > 0}

and then let

b(E′) =
∑
ei∈E′

 ∑
ej∈E∧cij∈C>0

cij +
∑

ej∈E∧cji∈C>0

cji



This means that b(E′) is the maximum possible increase to the overall solu-
tion by adding elements from E′, which in algorithm 4.2.1.1 is the elements not
yet included in the exact cover.

4.2.1.4: Lemma If C is an exact cover or E−E′ there does not exist and exact
cover of E, C ′ such that c(C ′) < c(C) + b(E′) and C is a sub-solution of C ′
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(that is if C = {C1, . . . Cm} and C ′ = {C ′1, . . . C ′p} then for all i with 1 ≤ i ≤ p
there exists j such that Cj ⊆ C ′i or C ′i ⊆ E − E′).

I can now present an algorithm capable of finding the exact solution to the
equivalence set problem

4.2.1.5: Algorithm
Input: A linear equivalence problem (E, r, {cij})
Output: An exact cover of E, {C1, . . . Cm}

1. Set c∗ = −∞, C∗ = undef

2. Call function solve({}, 0, E)

3. Output C∗

function solve(C, c,E′)

1. If E′ = ∅ then if c > c∗ then c∗ ← c and C∗ ← C. return

2. If c+ b(E′) < c∗ return

3. Take ei ∈ E′

4. Assume C = {C1, . . . Cn} for k = 1, . . . n call solve({C1, . . . Ck∪{e}, . . . Cn}, c+∑
ej∈Ck

(cij + cji)), E′ − {ei})

5. Call solve(C ∪ {{ei}}, c, E′ − {ei})

This algorithm now recursively branched until it finds the optimal solution,
however this still potentially covers a very large search space and I would like to
improve this further. I will do this by attempting to improve on the bounding
condition.

4.2.1.7: Definition Define the set join cost of two sets, denoted cjoin(C1, C2) :
P(E)× P(E)→ R as

cjoin(C1, C2) =
∑
ei∈C1

∑
ej∈C2

(cij + cji)

4.2.1.8: Lemma If for some C ⊆ E then C = C1 ∪ C2 and C1 ∩ C2 = ∅ then

c(C) = c(C1) + c(C2) + cjoin(C1, C2)

Proof: Follows trivially from definition of c(C) and cij .

This join cost can be used to provide a much more powerful bounding crite-
rion
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4.2.1.9: Theorem For any E′ ⊂ E and ek ∈ E, ek /∈ E′ and C ⊂ E, with
C ∩ E′ = ∅ and ek /∈ C, if it holds that

cjoin(C, {ek}) +maxC′⊆E′cjoin(C ′, ek) < 0

Then it follows that there does not exists a set K such that C ∪ {ek} ⊂ K ⊂
C ∪ {ek} ∪ {E′} and

c(K) > c(K − {ek}) + c({ek})

Proof: It is clear that for any set K

maxC′⊆E′cjoin(C ′, ek) ≥ cjoin(K − {ek}, {ek})− cjoin(C, {ek})

and so
0 > cjoin(K − {ek}, {ek})

Hence

c(K − {ek}) + cjoin(K − {ek}, {ek}) + c({ek}) < c(K − {ek}) + c({ek})

By above lemma we get our result

c(K) > c(K − {ek}) + c({ek})�

Simplified this theorem states that if the criterion

cjoin(C, {ek}) +maxC′⊆E′cjoin(C ′, ek) < 0

Holds, then any set K, which could be added to the solution and contains ek will
produce a worse overall exact cover than the cover where K−{ek} and {ek} are
separate. Fortunately checking this criterion is easy as maxC′⊆E′cjoin(C ′, ek)
is actually easy to compute

4.2.1.10: Lemma If C ′ = argmaxC′⊆E′cjoin(C ′, ek) then

C ′ = {ei|cik + cki > 0}

Proof: This is actually trivial from the definition of cjoin as it is the sum of
values of the form cik and cki.�

This means that there is a new bounding condition for my algorithm, when
a set C has been generated and it is attempting to add an element ek to C it
is possible to first check if the condition in the above theorem holds. If it does
then any solution which has {C ∪ {ek}} as a sub-solution is less optimal than
one which has {C, {ek}} as a sub-solution.

I can also offer one more modest improvement
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4.2.1.11: Theorem If E = E1 ∪ E2 and E1 ∩ E2 = ∅ and the sets are such
that

∀ei ∈ E1∀ej ∈ E2cij + cji < 0

Then for any set C ⊆ E such that E1 ∩ C 6= ∅ and E2 ∩ C 6= ∅. If C1, C2 be
C1 = C ∩ E1 and C2 = C ∩ E2 then

c(C) > c(C1) + c(C2)

Proof: Simply observe c(C) = c(C1)+c(C2)+cjoin(C1, C2) and that cjoin(C1, C2) <
0.�

This theorem essentially states that if the set of elements can be divided
such that all links between each set are negative, it is possible to consider the
problem as a number of sub-problems.

4.2.1.12: Definition Define the components of a set E as the set Cp =
{Cp1 , . . . CPm} such that

1.
⋃
i=1,...m C

P
i = E

2. For all i, j such that 1 ≤ i < j ≤ m, Cpi ∩ C
p
j = ∅

3. For all i, j such that 1 ≤ i < j ≤ m ∀ei′ ∈ Cpi ∀ej′ ∈ CPj ci′j′ + cj′i′ < 0

4. For all i such that 1 ≤ i ≤ m, ∀ei′ ∈ Cpi ∃ej′ ∈ CPi ci′j′ + cj′i′ ≥ 0

4.2.1.13: Lemma For any set the components exist, are unique and can be
found by an algorithm in O(|E|2) time

4.2.1.14: Algorithm
Input: A set E with corresponding costs {cij}
Output: The components of E, {Cp1 , . . . Cpm}

1. Initially let Cp → {{e1}, . . . {en}}

2. For each i from 1, . . . n

(a) For each j from i+ 1, . . . n

i. If cij + cji ≥ 0, let Cpi′ and Cpj′ be the sets that contain ei, ej
respectively, let CP ← (CP − CPi′ − CPj′ ) ∪ {CPi′ ∪ CPj′}

This algorithm proves the above lemma and although faster variants of this
algorithm exist but have the same worst case performance, for the most part
this method is not exceptionally slow so I feel no need to present more in depth
versions of the algorithm. It is now possible to say
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4.2.1.15: Corollary If CP = {CP1 , . . . CPm} are the components of E and the
optimal exact cover of each CPi is Si for i = 1, . . .m then the optimal exact
cover of E is

⋃
i=1,...m Si

I now present an improved version of the branch and bound algorithm

4.2.1.16: Algorithm
Input: A linear equivalence problem (E, r, {cij})
Output: An exact cover of E, {C1, . . . Cm}

1. Find the components Cp of E by Algorithm 4.2.1.14

2. Set C∗ → {}

3. For each Cpi ∈ Cp

(a) Set c∗i = −∞, C∗i = undef

(b) Call function solve({}, 0, Cpi )

4. Output C∗

function solve(C, c,E′)

1. If E′ = ∅ then if c > c∗ then c∗ ← c and C∗ ← C. return

2. If c+ b(E′) < c∗ return

3. Take ei ∈ E′

4. Assume C = {C1, . . . Cn}

5. For each k from 1, . . . n

(a) If cjoin(Ck, {ei})+maxC′⊆E′cjoin(C ′, ei) ≥ 0 then call solve({C1, . . . Ck∪
{e}, . . . Cn}, c+

∑
ej∈Ck

(cij + cji)), E′ − {ei})

6. Call solve(C ∪ {{ei}}, c, E′ − {ei})

4.2.2 Implementation by Dancing Links

One of the main features of the algorithm is that it is in fact possible to im-
plement it quite efficiently by implementing the matrix correctly. I do this by
using a very specific form of a sparse matrix, known as a dancing links matrix,
following Knuth [2004]

This form consists of a node with two values i and j, containing the nodes
location and four pointers up, down,left,right, each of which point to the node
that is immediately in that direction. If no such node exists then this pointer
instead points to the first value on the opposite side of the matrix (i.e., down
would point to the top value in the same column). this value. By which I mean
if there is no node immediately above the chosen node the up pointer points to
the node at the bottom of the same column, which could even be the chosen
node.
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Figure 4.1: Links representation of a
matrix

This data structure is useful as it
allows columns to easily be removed
and then the column remove undone,
so to remove a column it is only nec-
essary to apply the following code to
each node.

node->left->right = node->right
node->right->left = node->left

This has the advantage that node
still remembers where it was in the
data structure as its left and right
parameters. This form also makes it
possible to quickly find the reduction
by a column because it is simply pos-
sible to iterate along the left and up
pointers. For example see the repre-
sentation of figure 4.1, which shows
the matrix  1 0 1

1 1 0
1 0 1


In this figure the arrows disappearing at the edge are assumed to continue on
the opposing edge of the diagram. Figure 4.2 shows the effect on the matrix
if a row is removed, where the second row has been removed. It is clear that
the nodes in the second row are no longer accessible from any other nodes in
the matrix, but that the first node in the second still has pointer to nodes in
the first and third row. This effectively gives the matrix a “memory” of which
columns were removed, making it possible to easily define operations to restore
the matrix if needed.

4.2.3 Improving the algorithm with linear relaxation

A commonly used procedure for exact cover problems is to use linear program-
ming to find a solution. This is done by use of relaxation, a relaxed problem is
defined as a problem which is easily solved (typically in polynomial time) and
under certain conditions will produce a solution to a NP-hard problem. This
method is popular and has been used for a wide variety of problems of NP-Hard
problems (see Hromkovič [2002]).

4.2.2.1: Definition Linear programming is the process of finding a vector
x ∈ RN such that x satisfies the inequality Ax ≥ b for some matrix A and
constant vector b ∈ RN and there does not exist a vector x′ ∈ RN such that for
some vector c ∈ RN cTx′ < cTx
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Figure 4.2: Links representation of a
matrix, with one row removed

It is also easy to modify this def-
inition without any loss of generality
to include the case where there is an
equality statement Ax = b, instead
of the inequality.

4.2.2.2: Theorem A linear pro-
gramming problem can be solved in
polynomial time

This theorem is proved in Khachian
[1979]. I now turn to the issue of con-
verting the problem to a linear pro-
gramming problem.

4.2.2.3: Definition Let {C1, . . . Cm} =
P(E), let A = (aij) be a matrix of size
|P(E)| × |E| where aij = 1 if ej ∈ Ci
and aij = 0 otherwise.

4.2.2.4: Lemma If x ∈ {0, 1}|P(E)|

is a vector such that Ax = 11 , then
the set C∗, given by Ci ∈ C∗ if and only if xi = 1, is an exact cover of E.
Proof: If Ci ∈ C∗ and Cj ∈ C∗ and i 6= j then Ci ∩ Cj = ∅ as if ek ∈ Ci and
ek ∈ Cj then aik = 1 and ajk = 1 hence it follows that if y = Ax, yk ≥ 2. Also
for all k, yk = 1 hence it follows that there must be some i such that aik = 1
and xk = 1, hence it follows Ci ∈ C∗ and ek ∈ Ci.�

4.2.2.6: Definition Let c ∈ R|P(E)| be a vector that corresponds to the values
{cij}

It is now possible to restate the problem of finding the maximal exact cover
to finding a vector x ∈ {0, 1}|P(E)| which maximises

cTx

subject to
Ax = 1

It is clear there is a relaxed version of this problem, which requires only finding
a vector x ∈ R|P(E)|, which satisfies the above programming problem and then
use this value to find x ∈ {0, 1}|P(E)|. However before attempting to do this
there is a problem in that |P(E)| = 2|E|, which means that any trivial attempt
to form the matrix A will be computationally intractable as the size of this

1Define 1 as the vector 1 = (1 . . . 1)T , and similarly the vector 0
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matrix will be too large. As such I wish to find a set D such that D ⊂ P(E)
and if C∗ is the true optimal solution and C∗ ⊂ D. The basic approach to
this is to disregard all sets which cannot possibly be in the optimal solution. I
have already shown two principles for doing this in Theorem 4.2.1.9 and Lemma
4.2.1.11, and they can be reused here to generate the set D

4.2.2.7: Algorithm
Input: A set E with corresponding costs {cij}.
Output: A set D ⊆ P(E), for which some subset of D is the maximal exact
cover of E.

1. Let J ← ∅, D ← ∅

2. For each connected component V in E: call generate matrix(J, V )

3. output D

function generate matrix(J, V )

1. while V 6= ∅

(a) Let ek ∈ V be such that it minimises
∑
i=1...|E| cik

(b) Let V ← V − {ek}
(c) If J = ∅ or

∑
ei∈J cik > 0 or −

∑
ei∈J cik < maxV ′⊂V

∑
ei∈V ′ cik

then

i. Add J ∪ ek to D.
ii. call generate matrix(J ∪ ek, V )

This algorithm incorporates the use of connected components as well and
outputs the generated set D. Then use D to generate a matrix AD which is
formed in the same way as A but included only the sets that were generated inD.
I then find the vector xr ∈ R|P(E)| that minimises cTxr subject to ADxr = 1.
The goal is now to use this solution to find the optimal solution and I approach
this by considering those values of x which are non-integer and branches into
two solutions one where zero is assumed and one where one is assumed. This
can be done fairly efficiently by reducing A to a smaller matrix. For the case
where I assume the non-integer value to be zero, it is only necessary to set the
corresponding column to all zero as this set is no longer a possible solution. In
the second case it is necessary to remove all other columns which have a 1 in
the same row the corresponding column has a 1.

4.2.2.8: Definition Define the reduced matrix A′i as a matrix where a′jk = 0
if ∃m such that ajm = 1 and aim = 1 and j 6= i, and a′jk = ajk otherwise.

4.2.2.9: Algorithm
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Input: A matrix A and a vector xr ∈ R|P(E)| which minimises cTx subject to
Ax = 1.
Output: A matrix A and a vector xr ∈ {0, 1}|P(E)| which minimises cTx
subject to Ax = 1.

function unrelax(A,xr)

1. Let k be a value such that 0 < xrk < 1. If no value exists return cTxr.

2. Let A0 be the matrix A, except akj = 0 for j = 1 . . . |E|.

3. If for all i there exists j such that a0
ij = 1 then find x ∈ R|E| that minimises

cTx subject to A0x = 1. Let x0 = unrelax(A0,x).

4. Find x ∈ R|E| that minimises cTx subject to A′kx = 1. Let x1 =
unrelax(A′k,x)

5. return x0 if cTx0 < cTx1 or return x1 otherwise.

In fact it should be noted that the derelaxation algorithm can itself be used
as a solution for the problem without requiring the linear programming as in
stead of searching for a new vector x at every stage, instead continuing the
branching until the minimum solution is found, however linear relaxation can
greatly reduce the number of iteration the algorithm has to perform.

4.2.4 Simplex Algorithm

There are several methods that are capable of solving linear programming prob-
lems. For this work I chose to use the Simplex algorithm of Dantzig [1951].
This method has exponential complexity however it has been shown to often
out perform polynomial time algorithms due to its simplicity. Firstly recall the
definition of a linear programming problem is minimising cTx subject to

Ax ≥ b

Suppose

A =

 a11 . . . a1n

...
. . .

...
am1 . . . amn


Now it is possible to restate the problem as a set of linear equation by the use
of slack variables, s1 . . . sm, t

a11x1 + . . .+ a1nxn + s1 = b1
...

am1x1 + . . .+ amnxn + sm = bm
−c1x1 + . . .+−cnxn + t = 0
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This then makes it possible to state a single matrix, which contains all the
necessary information, which is called a tableau

a11 . . . a1n 1 . . . 0 0 b1
...

... 0
. . . 0 0

...
am1 . . . amn 0 . . . 1 0 bm
−c1 . . . −cn 0 . . . 0 1 0


It follows that it is possible to apply simple linear manipulations until a suitable
matrix is achieved. The next step is to rearrange this so that the linear solution
gives a simple solution, this is performed by using linear transformations to
make it such that some columns contain only one zero. For example assume
there is a problem with

A =
(

1 0
0 1

)
, b = (3 2)T , c = (1 2)T

Then this gives a tableau 1 0 1 0 0 3
0 1 0 1 0 2
−1 −2 0 0 1 0


Now by adding the first row to the third row and the second row to the third
row we can obtain the following tableau 1 0 1 0 0 3

0 1 0 1 0 2
0 0 1 1 1 5


Which corresponds to the following linear equations

x1 + s1 = 3
x2 + s2 = 2

s1 + s2 + t = 5

Now it is clear that by setting s1 = 0 and s2 = 0 we can get the solution
x = (3 2)T . Call a column cleared if all of its values are zero except one. The
simplex algorithm attempts to then clear the variable using the row that cause
the smallest increase in the cost variable t. This is performed by finding a pivot
column as the column with the lowest (negative) value, and then finding a pivot
row j, which is the row that has the lowest value for

bi
aij

As such I can now present the simplex algorithm

4.2.3.1: Algorithm
Input: A linear programming problem, (A,b, c)
Output: A vector x, which solves the problem
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1. Form a tableau

2. Choose the pivot column, j, as the column with the lowest negative value
in the bottom row

3. Choose the pivot row, i, as the row that minimises bi

aij

4. Multiply the pivot row by 1
aij

.

5. For each other row add the pivot multiplied by some value such that the
value in the pivot column is 0.

6. If the bottom row has a negative value go to step 2

7. Output x, the solution given by setting the variables of all uncleaned
columns to zero

4.2.3.2: Theorem The simplex algorithm solves a given linear programming
problem

For the proof of this see Hromkovič [2002].

Summary

This section concerns a specific problem of finding an optimal network when
the model of a network is a set of mutually exclusive sets, which is the same
as finding an exact cover of the elements. I first present a naive algorithm,
which solves this through a greedy search. As this method cannot find an exact
solution, I define a simple bounding condition, which allows for a branch and
bound search method. I then present another algorithm which rather than
adding elements one by one, instead generate a set of candidate sets and adds
sets to the solution. I present a bounding condition for set generation and
a results based on components, which can be used to reduce the number of
candidate sets. I convert the task of finding the sets which constitute an exact
cover into an integer programming problem, which can be efficiently solved by
relaxing it to a linear programming problem. Finally, I briefly the describe the
Simplex algorithm, which is capable of solving linear programming problems.

4.3 Simple Logic

I would like to be able to extend my system to be able to handle other kinds
of structures than just the equivalence structure, most notably I would like to
be able to handle hierarchical structures. When it comes to studying hierarchi-
cal structures, there are a number of potential variations on these structures.
Firstly, hierarchies often have a fixed root element from which all other elements
are descended or may have a fixed number of such roots. In addition, often the
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hierarchy should not be a hierarchy of terms, but a hierarchy of sets of term, so
I need a way to be able to combine my method with the equivalence structures
found above. For these reasons I choose not to take a simple approach to hier-
archy but to instead to look at the more general problem by approaching forms
limited by logical rules or axioms. I can then state the hierarchy problems by
assuming the system satisfies at least the following rules

4.3.1: Definition A hierarchical structure satisfies at least the following axioms

• ∀i, j, k r(ei, ej) ∧ r(ej , ek)→ r(ei, ek). This is called transitivity

• ∀i¬r(ei, ei). This is called irreflexivity.

• There are no loops in the graph.

It is trivial to show that the third property of the graph is implied by the
other two as if there was a set {ei1 , . . . ein} such that all links r(eij , eij+1) and
r(ein , e1) exist, then it implies that r(ei1 , ei2) ∧ r(ei2 , ei3) → r(ei1 , ei3) can be
used to show that the set {ei1 , ei3 , . . . ein} has the same property and hence by
induction r(ei1 , ei1) holds.

I can also restate the equivalence problem in a similar way

4.3.2: Lemma An equivalence structure is defined as

• ∀i, j, k: r(ei, ej) ∧ r(ej , ek)→ r(ei, ek)

• ∀i, j: r(ei, ej)→ r(ej , ei). This is called symmetry

• ∀i: r(ei, ei). This is called reflexivity

If {ei1 , . . . ein} is a set such that for all j, k with 1 ≤ j < k ≤ n, then ¬r(eij , eik)
and for all e ∈ E there exists k, such that r(e, eik) holds, then the set {C1 . . . Cn}
given by Cj = {e ∈ E|r(eij , e)} is an exact cover of E.
Proof: It is clear that for all e ∈ E, ∃i such that e ∈ Ci, as we have some k
such that r(e, eik) hence e ∈ Ck. If we have j, k, j 6= k such that there exists
e ∈ Cj ∩Ck then we have for some r(e, eij ) and r(e, eik) hence it follows we have
r(eij , eik).�

This shows that for structures constrained by the rules as above the problem
is the same as finding an exact cover.

So to provide a more general solution it is necessary to find rules in a general
logical form. I would like to limit this to the form which is most useful for general
problems
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4.3.1 Simple Logic

I define a logical system I call “simple logic” to specify the problem of handling
structures such as hierarchical structures. This logic has the property that when
it is grounded (all variables replaced with elements), then the form of the logic
is immediately equivalent to that of prepositional logic.

If N(E,R) is a set of networks, define a rule as follows

rule := expr → expr
expr := (term (,term)*)?
term := r (var,var) where r ∈ R
var := x1, . . .

4.3.1.1: Definition If there is a rule which contains exactly the variable
x1 . . . xm then a substitution is of the form (x1 ↔ ei1 , . . . xm ↔ eim). De-
fine the set of all possible substitutions S{x1...xm} of a single variable. Also
define a ground instance of a rule as a version of this rule where every variable
has been replaced with the appropriate element.

4.3.1.2: Definition If there is a ground instance, t, given by

t = r1(ei1 , ei′1) . . . rm(eim , ei′m)→ rm+1(eim+1 , ei′m+1
) . . . rn(ein , ei′n)

Define the premise set of t, premise(t) = {r1(ei1 , ei′1) . . . rm(eim , ei′m)} and the
conclusion set of t as conclusion(t) = {rm+1(eim+1 , ei′m+1

), . . . rn(ein , ei′n)}.

4.3.1.3: Example Take the transitivity rule r(x1, x2), r(x2, x3) → r(x1, x3)
and the set of elements is E = {animal,mammal, cat} then we can apply the
substitution (x1 ↔ animal, x2 ↔ mammal, x3 ↔ cat) to obtain the ground
instance r(animal,mammal), r(mammal, cat) → r(animal, cat). It premise is
{r(animal,mammal), r(mammal, cat)} and conclusion is {r(animal, cat)}.

4.3.1.4: Definition Define a ground instance, t, to be tautologous if there exists
r(e, e′) such that r(e, e′) ∈ premise(t) and r(e, e′) ∈ conclusion(t). Say that
ground instance t subsumes t′ if premise(t) ⊆ premise(t′) and conclusion(t) ⊆
conclusion(t′).

4.3.1.5: Definition A ground instance

r1(ei1 , ei′1) . . . rm(eim , ei′m)→ rm+1(eim+1 , ei′m+1
) . . . rn(ein , ei′n)

Is inconsistent with a network N ∈ N(E,R) if it holds that for j = 1 . . .m
rj(eij , ei′j ) ∈ N and there does not exist j with m < j ≤ n with rj(eij , ei′j ) ∈ N .
Define a rule to be consistent with a network if all possible substitutions of that
rule are consistent with the network.
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4.3.1.6: Definition If there are a set of rules, T , define a set of networks
VT ⊂ N(E,R), such that N ∈ VT if every rule in T is consistent with N .

4.3.1.7: Definition Define a linear simple logic consistency problem as a tuple
(E,R, T, P, c) where T is a set of rules with relations in R, P is the network
with minimal value for c(P ) and c is a set of positive costs corresponding to the
values ri(ej , ek) such that

c(ri(ej , ek)) = |log(p(ri(ej , ek)))− log(1− p(ri(ej , ek)))|

And the solution is N ∈ VT , which is a minimal network in VT with respect to

c(N) =
∑

ri(ej ,ek)∈N	P

c(ri(ej , ek))

4.3.2 Greedy algorithm:

I will now explain a greedy approach to this problem, which can be used as a
baseline. It can be shown that this will produce a solution for certain sets of
rules but not all. Starting with the network N = ∅ and this method attempts
to add links in a one by one order.

4.3.2.1: Definition The consequence set of link CN,T (r(ei, ej)) is defined as
such

• r(ei, ej) ∈ CN,T

• If there is a ground instance of a rule in T , t, such that premise(t) ⊆
CN,T ∪N then conclusion(t) ⊆ CN,T .

It is clear that this consequence set is well-defined and can be readily com-
puted by simply initialising the set to r(ei, ej) and repeatedly looking for rules
which are inconsistent with the network CN,T ∪ N and adding all conclusions
of such rules.

4.3.2.2: Definition The add cost of a set C ⊂ N(E,R) to a network N is
addcostN (C) =

∑
r(e1,e2)∈C c(r(e1, e2)).

4.3.2.3: Algorithm
Input: A linear simple logic consistency problem, (E,R, T, P, c)
Output: A network, N

1. Let N → ∅.

2. Choose a link r(e1, e2) that maximises addcostN (CN,T (r(ei, ej)))

3. If addcostN (CN,T (r(ei, ej))) < 0 output N
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4. Let N → N ∪ CN,T (r(ei, ej))

5. Goto step 2.

4.3.2.4: Lemma The network outputted by algorithm 4.3.2.3 is consistent with
the rule set T , if every rule in T has a conclusion of size 1 and ∅ ∈ VT .
Proof: The proof of this is as simple observing that if we have a network
N and CN,T (r(ei, ej)) then any ground instance, which has all its premises in
N ∪ CN,T (r(ei, ej)) must have all of its conclusions in N ∪ CN,T (r(ei, ej)) so
there cannot be any inconsistent ground instances. By induction this means
that every network generated at each iteration of the algorithm is consistent.�

It is clear that this means this algorithm is suitable for equivalence problems
and nearly identical in its implementation to algorithm 4.2.1.1, however as the
irreflexivity axiom translates to a rule

r(e1, e1)→

It is necessary to include a small caveat in step 2 of the algorithm that a
link r(ei, ej) where CN,T (r(ei, ej)) contains a link of the form r(ek, ek) for some
k cannot be chosen. It is clear that this restriction is sufficient as it stops the
algorithm adding links, which would create a loop in the structure.

It is easy to demonstrate with a simple example that this algorithm does not
find the optimal solution in general, however as with the equivalence algorithm
it is possible to extend the procedure to a branch and bound method in order
to find an algorithm, which can find the optimal solution.

4.3.3 Consistency based approach

To find a network consistent with these restrictions I approach the problem by
finding a method to correct the original solution. This is done by first taking the
graph that with no restrictions would score the maximal value for c(N) and then
attempting to “correct” it by adding or removing links, which are inconsistent
with the rule set.

4.3.2.1: Definition The inconsistent set of a networkN is the set inconsistT (N)
which contains all ground instances of rules in T , which are inconsistent with
N .

4.3.3.2: Lemma If t ∈ inconsistT (N) then and r(ei, ej) ∈ premise(t) ∪
conclusion(t) then t 6∈ inconsistT (N 	 {r(ei, ej)})

This result means that to “correct” a solution it is possible to simply add
a conclusion from an inconsistent ground instance or remove a premise. This
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could lead to an algorithm, which organises this into a branch and bound search,
however better results can be achieved by a linear approach as before.

4.3.3.4: Definition If there is a set of ground instances G it is possible to form
a matrix AG from it, where the columns of G corresponding to links and the
rows to instances from G as follows AG(r(ei, ej), g) = 1 if r(ei, ej) ∈ premise(g)
or r(ei, ej) ∈ conclusion(g), and AG(r(ei, ej), g) = 0 otherwise. Call the matrix
AinconsistT (N) the correction matrix of N , henceforth denoted AN

4.3.3.5: Lemma If there is a vector such that ANx ≥ 1 then the network given
by N 	 x2 is consistent with all the rules from inconsistT (N).
Proof: Follows from Lemma 4.3.3.2

4.3.3.6: Example Assume N = {r(e1, e2), r(e2, e3), r(e3, e4)} and we are using
the hierarchical rules

• r(x1, x2), r(x2, x3)→ r(x1, x3)

• r(x1, x1)→

Then it is clear we have the following inconsistT (N) is the following rules

• t1 = r(e1, e2), r(e2, e3)→ r(e1, e3)

• t2 = r(e2, e3), r(e3, e4)→ r(e2, e4)

So we can form the following matrix for A. r(e1, e2) r(e2, e3) r(e3, e4) r(e1, e3) r(e2, 3e4)
t1 1 1 0 1 0
t2 0 1 1 0 1


If we take x = (0, 0, 0, 1, 1), which has ANx ≥ 1. Then we get a final network
N 	 x = {r(e1, e2), r(e2, e3), r(e3, e4), r(e1, e3), r(e2, e4)}, which is clearly con-
sistent with the two rules from inconsistT (N) however it is not consistent in
itself as the rule r(e1, e3), r(e3, e4)→ r(e1, e4) is not consistent with N 	 x. So
my approach here cannot at the moment find a consistent network and I need
a way to be able to add the new rules.

The simple approach of trying to solve AN	x will not work in general as
it leads to loops. Say for example we choose the vector x = (0, 0, 0, 1, 1) as
it minimised the cost vector c = (2, 3, 2, 1, 1), then it should be clear that the
cost vector AN	x is c = (2, 3, 2,−1,−1, ?) (the ? corresponds to the cost for
r(e1, e4)). This means that the minimal solution for this approach is to return
to the original matrix N , hence this method will loop infinitely! As such I need
a way to add new rows to the matrix, I will show two approaches for this, one
which is simpler but makes the linear programming problem harder and one
which is more complex but leads to a more solvable matrix.

2N 	 x ≡ N 	 {ri(ej , ek)|x(ri(ej , ek)) = 1}



4.3. SIMPLE LOGIC 71

4.3.4 Expanding the matrix by negative values

The goal here is to create a matrix that can be used to state a linear program-
ming problem of the form Ax ≥ b, which is equivalent to solving the problem
of finding a network N 	 x, which is consistent with a set of ground instances
T .

4.3.4.1: Definition Define a matrix A−T whose rows correspond to the ground
instances of some set T = {t1, . . . tn} and columns to links from N . Consider
r(e, e′) is the jth element, then I define the matrix as

• If r(e, e′) ∈ premise(ti) and r(e, e′) ∈ N then a−ij = 1.

• If r(e, e′) ∈ premise(ti) and r(e, e′) 6∈ N then a−ij = −1.

• If r(e, e′) ∈ conclusion(ti) and r(e, e′) 6∈ N then a−ij = 1.

• If r(e, e′) ∈ conclusion(ti) and r(e, e′) ∈ N then a−ij = −1.

• a−ij = 0 otherwise.

I also define a vector b by

bi = 1− |{r(e, e′)|r(e, e′) ∈ premise(ti) ∧ r(e, e′) 6∈ N}|−
|{r(e, e′)|r(e, e′) ∈ conclusion(ti) ∧ r(e, e′) ∈ N}|

That is bi is 1 minus the number of negative values in its corresponding row

4.3.4.2: Theorem x is a vector such that A−T x ≥ b if and only if N 	 x is
consistent with all ground instances in T .
Proof: I have already shown the case for columns that have no negative values,
and that these must correspond to a rule ti which is not consistent with N .
Assume ti is consistent with N then ti is inconsistent with N 	 x if and only
if x has all the premises of ti, which are not in N , and all the conclusions,
which are, and doesn’t have a premise, which is not in N , or a conclusion,
which is in N . This means that for the row corresponding ti x must have
a 1 only where the column has a −1, this means that the product for this
column is −|{r(e, e′)|r(e, e′) ∈ premise(ti) ∧ r(e, e′) 6∈ N}| − |{r(e, e′)|r(e, e′) ∈
conclusion(ti) ∧ r(e, e′) ∈ N}|. Hence A−T x 6≥ b.�

4.3.4.3: Example Extending example 4.3.3.6 further we have two new ground
inconsistencies, which we need to add; these are

• t3 = r(e1, e2), r(e2, e4)→ r(e1, e4)

• t4 = r(e1, e3), r(e3, e4)→ r(e1, e4)
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It is clear that this gives a matrix as follows
r(e1, e2) r(e2, e3) r(e3, e4) r(e1, e3) r(e2, 3e4) r(e1, e4) b

t1 1 1 0 1 0 0 1
t2 0 1 1 0 1 1 1
t3 1 0 0 0 −1 1 0
t4 0 0 1 −1 0 1 0



4.3.4.4: Algorithm
Input: An LSLC problem, (E,R, T, P, c)
Output: A network N which solves the LSLC problem.

1. Let T 0 be the ground instances inconsistent with N . Let i← 0.

2. Find x that minimises cTx subject to A−T ix ≥ 1.

3. If N 	 x is consistent output: N 	 x.

4. Otherwise add all new inconsistencies to matrix as in definition 4.3.4.1.

5. Let i← i+ 1 and go to step 2.

This method is simple and easy-to-implement however I will now present a
more complex methodology, which can greatly improve the performance of my
system.

4.3.5 Expanding the matrix with resolution

4.3.5.1: Definition Say there are two ground instances t1, t2 such that r(e, e′) ∈
premise(t1) and r(e, e′) ∈ conclusion(t2). Then call the rule tr the resolvent of
t1 and t2 where

• premise(tr) = (premise(t2)− {r(e, e′}) ∪ premise(t2)

• conclusion(tr) = conclusion(t1) ∪ (conclusion(t2)− {r(e, e′)})

So I can now develop an algorithm that instead of adding negative values to
the matrix removes the need for them by resolving.

4.3.5.2: Definition A correction vector is a vector x such that if T are the
ground instances inconsistent with a network N then N 	 x is consistent with
all ground instances of T

Ihave already shown in Lemma 4.3.3.5 that all correction vectors also satisfy
ATx ≥ 1.
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4.3.5.3: Definition If there is a network N and a correction vector x then
call x a sufficient correction vector if there exists no correction vector x′ with
x′ ⊂ x (by which I mean that if xi = 0 then x′i = 0 and there is some i such
that xi = 1 and x′i = 0).

This definition essentially states a certain kind of Occam’s Razor in that a
sufficient correct vector changes no more values than are strictly necessary.

4.3.5.4: Lemma If x is such that x minimises cTx subject to ATx ≥ 1 then x
is a sufficient correction.
Proof: c is positive hence it follows that if x is not sufficient then the vector
x′ (as in definition 4.3.5.3) is also a solution to ATx ≥ 1 and cTx′ < cTx.�

4.3.5.4: Lemma If x is a sufficient correction vector of N then for each r(e, e′)
which corresponds to a 1 in x there is a ground instance t, which is inconsistent
with N and has r(e, e′) in its premise or conclusion.
Proof: If this were not true we would have a vector x′ with exactly the same
value as x in all places except r(e, e′) and this vector must be a correction vector
as r(e, e′) does not occur in any rule in T .�

4.3.5.6: Theorem Assume there is a network N and a sufficient correction
vector x and a ground instance t1 which is consistent with N but not N ′ = N	x
then there exists a set of ground instance T ′ such that each ti ∈ T ′ is consistent
with N ′ but not N . There is some chain of resolvents such that obtains a
rule t′ such that t′ is inconsistent with both N ′, and has premise(t′) ⊆ N and
conclusion(t′) ∩N = ∅ (hence is inconsistent with N).
Proof: For t1 consider r(e, e′) which is in the premise(t1) and has a 1 in the
corresponding vector x, there must be some t2 which is not consistent with N
and is with N ′ and contains r(e, e′) and this r(e, e′) must be in the conclusion of
t2 as r(e, e′) ∈ N ′ and hence r(e, e′) 6∈ N hence t2 can only be inconsistent with
N if r(e, e′) ∈ conclusion(t2). Resolve t1 and t2 around r(e, e′) to gain a new
rule t′ it is clear that this process can be repeated for each r(e, e′) in the premise
of t1 with a 1 for x and then a similar process carried out for the r(e, e′) in the
conclusions of t1. It should be clear that the result has the required property
as every rule in T does and we have eliminated all terms from t1 which do not
have the required property.�

Informally stated the previous theorem shows that whenever a inconsistency
is found it is possible to find a chain of resolvents with inconsistent ground
instances from previous iterations, such that the new ground instance is incon-
sistent with the base network, and hence can be readily added to the matrix.
4.3.5.7: Example Say N = {r(e1, e2), r(e2, e3), r(e3, e4), r(e4, e5)} and we use
the hierarchical logic so we have that T has the following ground instances
inconsistent with N
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1. r(e1, e2), r(e2, e3)→ r(e1, e3)

2. r(e2, e3), r(e3, e4)→ r(e2, e4)

3. r(e3, e4), r(e4, e5)→ r(e3, e5)

Now we can take the correction vector x equivalent to {r(e1, e3), r(e2, e4)r(e3, e5)}.
One of the ground inconsistencies with N 	 x is

r(e1, e3), r(e3, e5)→ r(e1, e5)

This can be solved by first resolving with t1 to get

r(e1, e2), r(e2, e3), r(e3, e5)→ r(e1, e5)

and then with t2 to get

r(e1, e2), r(e2, e3), r(e3, e4), r(e4, e5)→ r(e1, e5)

Which has the property that all its premises are in N and none of its conclusions
are.

This method makes it possible to keep adding new rules to the matrix by
adding their resolvents so a matrix can be developed that has no negative values,
allowing for some extra optimisations to be applied.

4.3.5.8: Algorithm
Input: An LSLC problem, (E,R, T, P, c)
Output: A network N which solves the LSLC problem.

1. Let T 0 be the ground instances inconsistent with N . Let i← 0.

2. Find x that minimises cTx subject to AT ix ≥ 1.

3. If N 	 x is consistent output: N 	 x.

4. Otherwise for each ground instance t, which is inconsistent with N 	 x
find by the above process a non-tautologous ground instance t′, which is
inconsistent with N and not already in T i or subsumed by a rule in T i,
and add it to T i+1.

5. Let i← i+ 1 and go to step 2.

I will now show that the algorithm 4.3.5.8 produces the true minimum across
all solutions, given the assumption of the cost function from definition 4.1.2.

4.3.5.9: Theorem Algorithm 4.3.5.8 solves LSLC problems
Proof: It should be clear by the stopping condition of the algorithm produces
a network that is consistent with all restrictions. Suppose we have a vector x′,
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which gives a consistent network N 	 x′ and has cTx′ < cTx. Now consider
the vector x′′ with x′′i = x′i if i corresponds to a term occurring in premise
or conclusion of a rule in T j (where j is the final iteration of the algorithm),
and x′′i = 0 otherwise. It should be clear that this vector has AT ix′′ ≥ 1 and
cTx′′ ≤ cTx′ and but such a vector cannot exist as x is the minimal solution to
the problem in step 2 of the algorithm.�

In fact it is unnecessary to do the resolution in a symbolic manner, as it can
easily be done as a linear procedure as follows

4.3.5.10: Algorithm
Input: A ground instance t, which is consistent with N but not N 	 x, where
x is a sufficient correction vector of A (corresponding to N)
Output: A matrix A′ with t added “by resolution”

1. Let t be the new inconsistent ground instance, add it to A using the
method 4.3.4.1 to get A′.

2. For each -1 in the row given by r, find a row, t′ that has a 1 in the same
column and doesn’t have a 1 anywhere else t’s row has a -1.

3. Add the values of row r′ to r, and then set any values greater than 1 to 1.

4. Output A′.

It is necessary to show that the rows required in step 2 exist

4.3.5.11: Lemma The row of step 2 of algorithm 4.3.5.10 exists.
Proof: It is simple to observe that a row with a 1 in the correct place exists
as otherwise x cannot be a sufficient correction vector as there would be vector
identical to x except without a 1 in the corresponding place. Similarly the
condition that this row doesn’t have multiple 1s which match up with r’s -1s,
also implies that there exist multiple vectors, which would make x not sufficient.

It should be clear that this process is simple and removes the need for any
symbolic resolution to be performed.

4.3.5.12: Example Suppose there is a matrix

A =
(

1 1 0
0 1 1

)
Which corresponds to the rules (for here I shall denote links as just ri instead
r(e1, e2) for simplicity)

r1 → r2
r3 → r2
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Take the sufficient correction vector x = (1 0 1)T , and we get a new inconsis-
tency

t = r4 → r1, r3

Then it can be added by negative values to the matrix to get

A =

 1 1 0 0
0 1 1 0
−1 0 −1 1


Then adding row 1 to row 3 gives

A =

 1 1 0 0
0 1 1 0
0 1 −1 1


And adding row 2 to row 3 gives

A =

 1 1 0 0
0 1 1 0
0 1 0 1


This is the same effect as resolution which would have given a rule

r4 → r2

I shall make a quick note about the behaviour of the algorithm when the set
of ground instances are not satisfiable, that is there VT = ∅.

4.3.5.13: Lemma If there exists a set of ground instances, T , such that VT = ∅,
then there is some sequences of resolution that lead to the empty clause →.
Proof: Consider if all possible resolvents of T , were added to a matrix A if none
of them were empty then it is clear that x = (1 . . . 1)T has that Ax ≥ 1, hence
there exists a sufficient correction vector x′ which gives a consistent solution.�

4.3.5.14: Example Suppose

t1 = r1 → r2
t2 =→ r1
t3 = r2 →

Then resolving t1 with t2 gives t′ =→ r2 and resolving that with t3 gives the
empty clause this must be added to the matrix as a row of all zeros, and it is
clear that

0x1 + . . .+ 0xn 6≥ 1
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Hence this matrix has no correction vectors. Similarly for algorithm 4.3.4.4,
suppose we have N = r1, then it is clear that adding all rules gives the matrix
problem as  1 1

0 −1
−1 0

x ≥

 1
0
0


And it is clear that this matrix problem has no solutions.

4.3.6 Matrix optimisation

If there is a matrix AT which is derived from a set of ground instances incon-
sistent with T and the cost function is known, then many of the choices can be
very quickly eliminated for on straightforward reasons.

4.3.6.1: Lemma If there is a rule t and another rule t′ and t subsumes t′ then
any correction vector x also is a correction vector of AT−{t′}.

This is clear as t′ must be satisfied if t is. This can be stated in the form of
the first matrix reduction principle.

4.3.6.2: Row reduction principle If there exists i, j such that for all k if
aik = 1 then ajk = 1 then it is possible to remove row j.

This should rarely occur in the course of normal operation of the algorithm,
but it will do if the number of columns is also reduced.

4.3.6.3: Lemma If there is a link r1(e, e′) and a link r2(f, f ′) and for every rule
t in T , if r1(e, e′) occurs in t then r2(f, f ′) occurs in t and there is a correction
vector x, which has a 1 corresponding to r1(e, e′), then the vector obtained from
x by setting the value at r1(e, e′) to 0 and the value at r2(f, f ′) to 1 is also a
correction vector.
Proof: This is simply shown by recalling that it is only necessary to change
one link in a rule to make it consistent with N , so now if we change r2(f, f ′)
instead of r1(e, e′), it makes at least the same rules from T consistent hence it
follows that this is also a correction.�

4.3.6.4: Column reduction principle If there exists i, j such that for all k
if aki = 1 then akj = 1 and for some cost vector c it holds that cj > ck, then it
is possible to remove column j.

I can now present the matrix reduction algorithm

4.3.6.5: Algorithm
Input: A matrix A with aij ∈ {0, 1} for all values, and a positive vector c.
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Output: A matrix A′ such that if x minimises cTx subject to ATx ≥ 1 then
A′Tx ≥ 1.

1. Find all columns which can be reduced, and remove them (set all the
values in that column to zero).

2. Find all rows which can be reduced, and remove them.

3. If the matrix has changed goto Step 1.

4.3.6.6: Example Say we have the matrix and cost vector as below
r(e1, e2) r(e2, e3) r(e3, e4) r(e1, e3) r(e2, 3e4) r(e1, e4)

t1 1 1 0 1 0 0
t2 0 1 1 0 1 0
t3 1 1 1 0 0 1
c 3 4 5 1 6 6


We can see that the columns corresponding to r(e2, e4), r(e1, e4) and r(e1, e2)
can all be removed as they cost more than r(e3, e4), this obtains the following
matrix 

r(e1, e2) r(e2, e3) r(e1, e3)
t1 1 1 1
t2 0 1 0
t3 1 1 0
c 3 4 1


Now we can remove the row corresponding to t1 as it is subsumed by t2.

r(e1, e2) r(e2, e3) r(e1, e3)
t2 0 1 0
t3 1 1 0
c 3 4 1


This leads us to remove r(e1, e3) as an empty solution

r(e1, e2) r(e2, e3)
t2 0 1
t3 1 1
c 3 4


Finally we remove t2, then r(e1, e2) to get the trivial matrix r(e2, e3)

t2 1
c 4


This states that the optimal solution is x = (0, 1, 0, 0, 0, 0)T
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It is important to note that when using this algorithm in the resolution based
process, these matrix reductions are only useful for solving a single matrix, once
the optimal solution has been found by simplex or similar approaches, it is
necessary to restore the matrix to its original form before attempting to resolve
and add new rules.

4.3.7 MAX-SAT approaches

The weighted maximum satisfiability problem (Weighted MAX-SAT) is a very
similar problem and I will show that it is in fact possible to represent my problem
as a special form of weighted MAX-SAT. I will also show that for several reasons
approaching the problem as a weighted MAX-SAT problem is not as efficient as
my specialised approach.

4.3.7.1: Definition Say there is a set of ground instances T and for each
ground instance there is a cost function c : T → R, then define a maximum
satisfaction of T as a set T ′ ⊆ T such that VT ′ 6= ∅ and is maximal w.r.t.∑

t∈T ′

c(t)

That is there does not exist T ′′ ⊆ T , which has VT ′′ 6= ∅ and has∑
t∈T ′′

c(t) >
∑
t∈T ′

c(t)

It is clear that the primary difference between weighted MAX-SAT and my
problem is that in my problem I assign the costs to the links, i.e., the terms of
the rules, where as in weighted MAX-SAT it is assigned to the ground instances.
It is not in general possible to find a way to convert costs from my problem into
costs in a weighted MAX-SAT problem, however I can get around this by adding
further ground instances to describe the problem.

4.3.7.2: Definition For each link ri(ej , ek) define the cost of this link as

c(ri(ej , ek)) = log(p(ri(ej , ek))− log(1− p(ri(ej , ek)))

Then as in definition 4.3.1.1, it is easy to see that

log(p(N)) = log(P (∅)) +
∑

ri(ej ,ek)∈N

c(ri(ej , ek))

I also define the maximal cost M as

M =
∑

ri(ej ,ek)∈N

|c(ri(ej , ek))|
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4.3.7.3: Lemma For all N ∈ N(E,R) it holds that

M ≥ log(p(N))

This lemma follows directly from the definitions above. I can now restate
the problem as a weighted MAX-SAT problem

4.3.7.4: Definition If T is the set of ground instances and then let Tb be the
set given by ground instances of the form

ri(ej , ek)

Such that there exists one ground instance for each ri(ej , ek) ∈ N . Then define
a function c : T ∪ Tb → R such that for ri(ej , ek) ∈ Tb, c is as in definition of
4.3.7.2 and for t ∈ T , c(t) = M

4.3.7.5: Theorem If T ′ is the maximum satisfaction of T ∪ Tb weighted by
c then the network given by T ′ ∩ Tb is the solution to the problem stated in
solution 4.3.1.7 or VT = ∅ (T has no consistent solutions).
Proof: Suppose there is a network N ∈ VT it is clear that there is a solution
given by N ∪ T as we have that N is consistent with T , this means that the
maximal solution has a cost of at least |T | × M , we can also see from the
definition of M that any subset of T ∪ Tb has a cost less than (|T | + 1) ×M .
From this we can deduce that the maximal solution must contain T , and it
is clear from Lemma 4.3.7.3 that this maximal solution maximises the same
quantity that the cost function of definition 4.3.1.7 minimises.�

It is clear that this method is correct but in most cases will result in a
problem that is far to large to deal with, so for the same reasons as for the
previous approach I will limit the method to only a small section of the rules.

4.3.7.6: Definition Let P be a network where ri(ej , ek) ∈ P if c(ri(ej , ek)) > 0,
let TP be the ground instances inconsistent with P , let RP be the set of terms
occurring in ground instances of P .

4.3.7.7: Algorithm
Input: A set of ground inconsistencies T on a network given by relations R
and elements E, and cost function c on this network
Output: A network N , which is maximal w.r.t. theorem 4.3.7.5

1. Let T ′ ← TP ∪Rp as in definition 4.3.7.6
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2. Let N be the network gained by finding the weighted maximum satisfac-
tion of T ′.

3. If N is consistent with T output N .

4. Let T ′ ← T ′ ∪ TN ∪RN .

5. Go to Step 2.

4.3.7.8: Example Assume we have E = {e1, e2, e3}, R = {r} and we have
that T = {r(e1, e2), r(e2, e3)→ r(e1, e3) and c defined by

c e1 e2 e3
e1 0 −1 −2
e2 −1 0 −3
e3 2 3 0

Now we get our problem as finding the maximum weighted satisfaction of

r(e1, e2) −1
r(e2, e3) 3
r(e1, e3) 2
r(e1, e2), r(e2, e3)→ r(e1, e3) 12

While this shows that using an “off-the-shelf” MAX-SAT algorithm is possi-
ble in theory, there are a number of issues that make most MAX-SAT algorithms
unsuitable for this problem

• Very large clause count: Consider the transitivity rule given as

r(x1, x2), r(x2, x3)→ r(x1, x3)

For a reasonably sized problem of |E| = 1000, there are a billion ground
instances (although technically 1000 are trivial). This means that any
algorithm such as UniSAT, [Gu, 1992] which relies on global optimisation
across all clauses are not suitable.3

• Assignment of costs: As most clauses in the system will have the same
cost, i.e., M , many algorithms will have particular problem in deciding
which clause to add at which time. Furthermore, as the costs are only on
unit clause this is very difficult for any algorithm based on flow algorithms
of Yannakakis [1992]4

3UniSAT works by converting logical clauses into an algebraic form and solving as an
algebraic problem

4This relies on viewing unit clauses as “sources” and “sinks”, and plotting the “flow”
through the system of clauses. For my problem this is not applicable as all limits on the
“flow” would occur at the “sources” or “sinks”
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• Solution must be consistent: It is required that the solution gives a
network is consistent with all ground instances. Approximate weighted
MAX-SAT algorithms cannot guarantee this unlike approximate algo-
rithms designed for my problem.

• High density of correct solution: As my problem has very few base
clauses, but give a very large number of potential consistent networks. For
example, for the equivalence logic this is given by the Bell Number [Rota,
1964]

|VT | = Bn =
n∑
k=0

(
n
k

)
Bk

This means that it is highly likely that the optimal consistent network
can be found from the network with highest probability P , by adding or
removing only a small number of links. This suggests that the stronger
algorithms for this problem will start at P , to reduce the amount of work
required.

I will also adapt an algorithm that is frequently used for SAT and MAX-
SAT problems call GSAT [Selman et al., 1992], and was adapted for Weighted
MAX-SAT in Yuejun Jiang [1995]. This algorithm works by “flipping” links,
that is adding or removing links, like my methodology, and can be viewed as a
kind of greedy search. I use two parameters to decide which link to flip firstly
the consistency gain which is defined as

consist-gainN (r(e1, e2)) = |inconsistT (N)| − |inconsistT (N 	 {r(e1, e2)}|

That is the consistency gain is equal to the change in the number of inconsistent
rules gained by flipping link r(e1, e2). I can now define the adapted GSAT
algorithm

4.3.7.9: Algorithm
Input: An LSLC problem (E,R, T, P, c)
Output: A network N which is consistent with T .

1. Initially N ← P .

2. While inconsistT (N) 6= ∅.

(a) Choose the link r(e1, e2) which maximises

c(r(e1, e2))consist− gainN (r(e1, e2))

If multiple such links exist choose one at random.

(b) Let N ← N 	 {r(e1, e2)}
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This algorithm is not guaranteed to terminate, for example it cannot possi-
bly terminate if T has no consistent networks, however I have found from my
experiments that it rarely fails to terminate in a reasonable time. In the original
paper [Selman et al., 1992], the authors suggest that the start point of GSAT
should be a random network, for this problem I choose to use P , as the intuition
is that the optimal network should be within a few flips of P , however I accept
that adding some random permutations to P and running multiple times may
be an acceptable compromise. I will also present one simple method that can
improve the efficiency of the algorithm and that is to store two variables the
gain and loss of the link, these represent the set of new links that would be
gained or lost by flipping one link, i.e., formally

gain(r(e1, e2)) = inconsistT (N)− inconsistT (N 	 {r(e1, e2)})
loss(r(e1, e2)) = inconsistT (N 	 {r(e1, e2)})− inconsistT (N)

It should clear that

consist-gain(r(e1, e2)) = |gain(r(e1, e2))| − |loss(r(e1, e2))|

If we choose to flip a link r(e1, e2), then it is possible to update gain and loss
by

gain(r(e1, e2))← loss(r(e1, e2))
loss(r(e1, e2))← gain(r(e1, e2))

And more importantly for each link r′(e′1, e
′
2) 6= r(e1, e2) their loss and gain are

updated by

gain(r′(e′1, e
′
2))← (gain(r′(e′1, e

′
2))− gain(r(e1, e2)))

loss(r′(e′1, e
′
2))← loss(r′(e′1, e

′
2)− loss(r(e1, e2))

The first part of both formulae should be clear if t ∈ T is satisfied by flipping
r(e1, e2), then it cannot now be satisfied by flipping r′(e′1, e

′
2), as it is already

satisfied. This methodology is effective but can cause problems consider a rule

→ r(e1, e2), r′(e′1, e
′
2)

When both r(e1, e2) ∈ N and r′(e′1, e
′
2) ∈ N , this is clearly satisfied and is

not in the loss of either link as we would need to flip both links to make it
unsatisfied. This means when updating the gains and losses, this link is never
included as it is not in the loss or gain of any link, however once we have flipped
r(e1, e2), r′(e′1, e

′
2) should have this rule in its loss. For this reason the best

way to implement this algorithm is to use the above update formula, and after
a fixed number of iterations, rebuild the gain and loss set. This gives a good
balance between having to search frequently for all inconsistencies (in general a
slow process), and is an effective solution.

4.3.8 Improvements to simple logic

I will now propose some simple extensions to improve the usability of the lan-
guage, which should make it possible to represent most useful forms of first
order logic statements.



84 CHAPTER 4. LOGICAL CONSISTENCY OF ONTOLOGIES

4.3.8.1: Definition I will now say that the set of relations R is in fact split
into two sets R = R1 ∪ R2 and that a network consists of a set of links of the
form r(ei, ej) where r ∈ R1 and links of the form r(ei) where r ∈ R2.

The purpose of allowing unary relation statements as well as binary state-
ments is to allow for statements about sets to be made, for example the first
order logic statement e ∈ S can be restated as rS(e). I shall also reformulate
the language for describing rules as such.

4.3.8.2: Definition The extended simple logic rule is of the form

rule := expr → expr
expr := (term (,term)*)?
term := r (var,var) where r ∈ R1 | r (var) where r ∈ R2

var := x1, . . . | ei where ei ∈ E

This extends the logic to be able to make statements about the unary op-
erators and makes it possible to state facts about particular elements from E.
This ability is useful as it allows for handling things such as in a hierarchical
logic, that all terms are derived from some root term (for example “object”), a
rule of the following from could be used

r(‘‘object’’,x1)

I shall also allow for certain links to be immutable, meaning that for the
purposes of the algorithms presented, it is not possible to change an immutable
link. This is useful as this allows us to expand on existing ontologies by including
the known links as immutable links. In effect this means that for those methods
based on choosing links such as algorithms 4.3.2.3 and 4.3.7.9 I simply modify
the algorithms to not choose an immutable link and for those based on matrices
such as algorithms 4.3.4.4 and 4.3.5.9 I do not allow the inclusion of a column
for an immutable link in the matrix.

I have also always made the explicit assumption that all elements in E are
different, that is that ei 6= ej if i 6= j, however for representing some of the more
complex forms seen in first order logic it would be advantageous to be able to
relax this.

4.3.8.3: Definition Redefine E as a set E = E′ ∪K (and E′ ∩K = ∅), and I
shall say that R has a relationship e(., .) such that the following axioms hold

1. ∀ei ∈ E : e(ei, ei)

2. ∀ei, ej ∈ E : e(ei, ej)→ e(ej , ei)

3. ∀ei, ej , ek ∈ E : e(ei, ej) ∧ e(ej , ek)→ e(ei, ek)

4. ∀ei, ej , ek ∈ E, r ∈ R : r(ei, ej) ∧ e(ej , ek)→ r(ei, ek)
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5. ∀ei, ej , ek ∈ E, r ∈ R : r(ei, ej) ∧ e(ej , ek)→ r(ek, ej)

6. ∀ki ∈ K,∃ei ∈ E′ : e(ki, ei)

7. ∀ki ∈ K, ei, ej ∈ E′ : e(ki, ei) ∧ e(ki, ej)→ i = j

8. ∀ei, ej ∈ E : e(ei, ej)→ i = j

e(·, ·) is a relationship in the network that is used to represent the idea of
equality. This makes it possible to introduce a number of constants K to the
system, however there will be some problems reformulating the logic to handle
these new forms. The first five axioms are standard forms and can just be
included as simple logic rules, however the sixth, seventh and eighth are harder.

Figure 4.3: The work-flow of algorithm
4.3.5.9

4.3.8.4: Definition The constant
axioms are such that for each element
k ∈ K, if E′ = {e1, . . . en}, there is a
ground instance

→ e(k, e1), . . . e(k, en)

And for each pair ei, ej ∈ E′, i 6= j
there are two ground instance

e(k, ei), e(k, ej)→
e(ei, ej)→

Summary

For dealing with different kinds of
network structures, I propose the use
of axioms to describe them, as it is
more flexible. In this section I present
a form of logic, which I call simple
logic, which has the property that its
ground instances can be viewed as
propositional logic clauses. As be-
fore I start by presenting a simple
greedy approach as a starting point,
and show that it can create a consistent solution for a subset of simple logic
problems. I approach the problem of finding the optimal solution, as that of
starting with the network that is most likely from the output of the pattern-
based extraction system, and enumerating the inconsistencies of this solution.
My method then attempts to correct the solution by adding or removing links.
I show that this can be presented as an integer programming problem, however
it is not easy to include inconsistencies that are introduced by changes of the
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matrix, which means the algorithm cannot naturally proceed after the first iter-
ation. This can be solved by the introduction of negative values or through the
use of resolution and I present both methodologies. I find the resolution based
method to be preferable as it allows for certain matrix reduction principles to
be applied, which can often reduce the matrix to a trivially solvable form. The
work flow of my method is presented in figure 4.3.

I then present an alternative approach, which converts the problem into a
weighted MAX-SAT problem, which is a widely studied problem. This conver-
sion makes the problem difficult for most standard solution methods of weighted
MAX-SAT but I do present an adaption of the GSAT method, which is practical
for most situations. Finally I present a few extensions to the simple logic algo-
rithm, which allow for a wider range of axioms to be used without fundamentally
changing how the solution methods I present operate.

4.4 First-order logic

4.4.1 Conjunctive Skolem Normal Form

The problem of representing first-order logic is hard, however most forms can be
represented through the use of skolemization. This is a process where existence
statements are converted into a set of functions and constants.

4.4.1: Definition Conjunctive Skolem Normal Form is a logical form as follows

statement := clause (∧ clause)*
clause := term (∨ term)*
term := predicate ‘‘(’’ parameter (‘‘,’’ parameter)* ‘‘)’’
parameter := var | constant | function ‘‘(’’ parameter (‘‘,’’
parameter)* ‘‘)’’
var := x1, . . .
constant := k1, . . .
function := f1, . . .

4.4.2: Definition Let Fn be the set of function with n parameters and F 0

be the set of constants in a CSNF. The CSNF is consistent with a network
N ∈ N(E,R) if there exists a functional mapping from the set F 0 to E and a
functional mapping from F 0 × E to E etc. And these mappings can be used
to translate the clauses of the CSNF to a set of simple logic ground instances
which are consistent with N .

4.4.3: Theorem Any first order logic can be converted into Conjunctive Skolem
Normal Form.

For proof of this theorem and discussion of algorithms suitable for converting
first order logic forms to CSNF please see Nomengart et al. [1998]
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The first task for solving more general first order logic problems is to define
the constant set K from definition 4.3.8.3, this is performed as follows

4.4.4: Definition If there is some CSNF, L, and we have the set of function
statements F and the set of constant statements C and there is a set of elements
E then define the constant set K by

• C − E ⊂ K

• For each f(. . .) ∈ F , if x1, . . . xm are the variables occurring in f(. . .)
then there is a constant kf |x1=ei,... for each substitution of x1, . . . xm with
variable from E.

• For each f(. . .) ∈ F , if g is a function symbol in f(. . .) similarly derive a
constant symbol by replacement of any variables.

4.4.5: Example Suppose E = {e1, e2} and we have CSNF equivalent to ∀x∃y :
r(x, y)

r(x1, f(x2))

Then we have that K = {kf(e1), kf(e2)}

If there are complex functional symbols it is sometimes necessary to intro-
duce some extra equivalences to ensure these functions work correctly. For
example assume we have F = {f(x1), g(x1), f(g(x1))}, we would need to intro-
duce an axiom to ensure that we don’t have a situation such as g(e1) = e2 and
f(e2) = e3 and f(g(e1)) 6= e3.

4.4.6: Definition The functional axioms of a set of functions are defined as
such that if there exists a parameter p in the CSNF and there is a function
f(. . .) such that somewhere in this function p occurs (denote this g(. . . p . . .),
although p may occur nested anywhere in this statement) then it is necessary
to introduce a rule of the form

e(x1, f(p)), e(x2, g(. . . f(p) . . .)→ e(x2, g(. . . x1 . . .))

4.4.7: Theorem If there is a CSNF problem, TCSNF then by taking K as the
constant set as defined in definition 4.4.4, then applying the constant axioms
of 4.3.8.4, the functional axioms of 4.4.6, and all substitutions to the remaining
rules, it is possible to gain a set of ground instances Tsimple such that for any
network N ∈ N(E,R), N is consistent with Tsimple according to definition
4.3.1.5 if and only if N is consistent with TCSNF according to definition 4.4.2
Proof: We show that the mappings mn from Fn × E × . . . × E are such
that for each f(. . .) ∈ FN we have for each e1, . . . en ∈ E we have that if
mn(f(e1, . . . en)) = e′ then we can create a network such that the statement
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e(f(e1, . . . en), e′) is in the network (hence satisfying constant axiom 6 of def-
inition 4.3.8.4) and we say there is no e′′, such that e(f(e1, . . . en), e′′). Then
we create a network such that this holds for all mappings. If we have a CSNF
instance then by repeated applications of function axioms we can first remove
all nested function statements. After that by applications of constant axioms 4
and 5 of definition 4.3.8.4 we can create a ground instance in simple logic which
is true if the CSNF statement is true and the axioms are true in the network. It
is clear that the function axioms must be true by the CSNF mapping and that
the ground axioms can easily be satisfied, for constant axioms 1-3 of definition
4.3.8.4 simply observe that for each value e′ ∈ E, we have a set defined by
{kf(p)|m(f(p)) = e′} and we have an equivalence relationship between elements
of the set {kf(p)|m(f(p)) = e′} ∪ {e′}. Axioms 4 and 5 of definition 4.3.8.4 can
be trivially made consistent by adding their conclusions to the network.
If we assume that we have a network that is consistent with the Tsimple and the
corresponding axioms we can simply construct the maps by finding the value e′

for each f(e1, . . . en) such that e(f(e1, . . . en), e′) is in the network. This value
must exist by axiom 6 and be unique by axiom 7 of definition 4.3.8.4 so we can
create a mapping which leads to the same consistent network.�

This means that it is possible to simply solve problems in first order logic
by converting them to CSNF and then creating the appropriate set of axioms
and solving this as a simple logic problem. It is important to note here that by
doing this it modifies the semantics of first order logic, essentially introducing a
closed world assumption in that every skolem function’s ground instance must
be mappable to a single element from E. This closed world assumption is ex-
plicitly stated in axioms 6, 7 and 8 of definition 4.3.8.3. This means that this
definition avoids the problems of undecidability normally found in first order
logic, however this means that some first order logic problems may be consid-
ered “unsatisfiable” under these semantics, when they would be “satisfiable”
under normal first-order semantics. This is easily verifiable by the fact that my
semantics mean that as it is possible to establish the following two identities

∀xi ⇔
∧
ei∈E

∃xi ⇔
∨
ei∈E

It is clear that under this transformation it is possible to convert any first-order
logic problem not involving functions into a propositional logic form and then
determine if it has any solutions. It should also be noted that applying these
two identities gives another way to solve first order logic problems, however the
effect of converting even simple first order logic statements into huge number of
simple logic ground instances. For example, the first order logic statement

∃x∀y : r(x, y)

Converts to ∨
ei∈E

∧
ej∈E

r(ei, ej)
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Which when translated into ground statements gives |E||E| ground instances of
the form

→ r(e1, e′1), . . . r(e|E|, e′|E|) where e′i ∈ E

For each possible choices for each e′i.
There are still several problems with simply applying my previous algorithms

to the problem, and these are caused by introducing a new relationship e into
the system. In contrast to the relationships before when there was a known
probability value for each relation, p(r(ei, ej)) for e there is no such value. It is
clear however that the cost of any particular assignment to e should not effect
the overall solution cost so I assume that

P (e(ei, ej)) = 0.5

Hence
c(e(ei, ej)) = log(P (e(ei, ej)))− log(1− P (e(ei, ej))) = 0

This is good but it makes it impossible to choose which e relations to include
in the initial network P . To solve this I assign a small probability value to
each e relation, which is small enough that it will not affect the overall solution.
This value is also useful in the solution method as if the values are chosen prefer
those links which are more likely to be true, this will guide the solver to choosing
better choices first.

4.4.8: Definition Define ε as value such that if ε′ is a value that is the smallest
nonzero value of

|r(ei, ej)− r(e′i, e′j)|

Where r ∈ R and ei, ej , e′i, e
′
j ∈ E and it is not the case that ei = e′i and ej = e′j .

Then ε is take to be a value such that

ε ≤ ε′

|K|

In practise it is rarely necessary to calculate this value, and instead just guess
a suitable value. For example on a machine using double precision floating points
a value of 2−1000 ' 10−300, is usually suitable.

4.4.9: Definition If there is a set of CSNF propositions T and a network N ,
and by definition 4.4.4 it is known that this will cause there to be a set of
constants, K. Then define the gain of a mapping from k ∈ K to e ∈ E as

gain(e, k) = |{t ∈ T |r(k, e′) ∈ premise(t), r(e, e′) 6∈ N)}
∪{t ∈ T |r(e′, k) ∈ premise(t), r(e′, e) 6∈ N}
∪{t ∈ T |r(k, e′) ∈ conclusion(t), r(e, e′) ∈ N}
∪{t ∈ T |r(e′, k) ∈ conclusion(t), r(e′, e) ∈ N}|
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Similarly define the loss as

loss(e, k) = |{t ∈ T |r(k, e′) ∈ premise(t), r(e, e′) ∈ N)}
∪{t ∈ T |r(e′, k) ∈ premise(t), r(e′, e) ∈ N}
∪{t ∈ T |r(k, e′) ∈ conclusion(t), r(e, e′) 6∈ N}
∪{t ∈ T |r(e′, k) ∈ conclusion(t), r(e′, e) 6∈ N}|

And then define the utility of the mapping as

utility(e, k) =
maxe′∈E(gain(e′, k)− loss(e′, k))− (gain(e, k)− loss(e, k))

maxe′∈E(gain(e′, k)− loss(e′, k))−mine′∈E(gain(e′, k)− loss(e′, k))

Stated informally the gain is “the number of clauses that could be satisfied
by replacing k with e”, the loss is “the number of clauses that may become
inconsistent if k is replaced with e”, and the utility normalises this value in the
range 0 ≤ utility(e, k) ≤ 1. This means it is possible to set the cost for the
relationship e as follows

c(e(e, k)) = ε× utility(e, k)

This value is now guaranteed to be less than the smallest possible difference
between two otherwise equal solutions, although it may end up differentiating
solutions with equal value. It is also possible to define the starting network P
as the network given by definition 4.2.1, but in addition it holds that for each
k ∈ K, e(e′, k) ∈ P and e(k, e′) ∈ P if e′ = argmine∈Eutility(e, k).

Ground instances such as those generated by constant axiom 6 (of definition
4.4.4) can be very long, however fortunately it is possible to easily deal with
this problem by using the column reduction principle (4.3.6.5). I reapply this
result so that I can add columns to the matrix in a “lazy” way.

4.4.10: Lazy column introduction principle For ground instances derived
from axiom 5, at each stage add values to columns, which

• Correspond to ground instances inconsistent with the network, i.e, columns
which are already in the matrix

• Have the lowest value for c(r(ei, ej)) among values for r(ei, ej) which are
not already in the matrix.

I now need to mention two more things: for relations r ∈ R which aren’t e,
I simply set the cost of all values r(e′, k), where e ∈ E′ and k ∈ K as

c(r(e′, k)) = 0

The reason for doing this is to make it easier for the system to follow deductions
made by constant axioms 4 and 5 (of definition 4.3.8.4). Secondly I shall say
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that the network from definition 4.4.9 also includes all statements of the form
e(e′, e′) where e′ ∈ E′ ∪K. We shall now follow through a simple example

4.4.11: Example Suppose we have a network N on the set of elements E′ =
{e1, e2, e3} and relation R = {r} given by

N = {r(e1, e2), r(e1, e3)}

And we wish to find a network, which is consistent with the following first order
logic statements

• ∀x : ¬r(x, x)

• ∀x, y, z : r(x, y) ∧ r(y, z)→ r(x, z)

• ∃x∀yr(x, y) ∨ x = y

It follows then that in CSNF this is given as

1. r(x1, x1)→

2. r(x1, x2), r(x2, x3)→ r(x1, x3)

3. → r(k, x1), e(k, x1)

And we have that K = {k}. In addition we introduce the following constant
axioms

1. → e(x1, x1)

2. e(x1, x2)→ e(x2, x1)

3. e(x1, x2), e(x2, x3)→ e(x1, x3)

4. r(x1, x2), e(x2, x3)→ e(x1, x3)

5. r(x1, x2), e(x1, x3)→ e(x3, x2)

6. → e(k, e1), e(k, e2), e(k, e3)

7. e(k, e1), e(k, e2)→

8. e(k, e1), e(k, e3)→

9. e(k, e2), e(k, e3)→

10. e(e1, e2)→

11. e(e1, e3)→

12. e(e2, e3)→
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(Note I have omitted unnecessary variants of axioms 7-12)

I now calculate the gain and loss of each assignment to k. For each value
we have at least gain=1 from axiom 6 and loss=2 from axioms 7 (of definition
4.3.8.4) in addition we have the ground instances of rule 3 which are

• → r(k, e1), e(k, e1)

• → r(k, e2), e(k, e2)

• → r(k, e3), e(k, e3)

Hence we have that
gain loss utility

k, e1 3 3 0
k, e2 1 3 1
k, e3 1 3 1

Hence it follows that our initial network N ′ is given as

N ′ = {r(e1, e2), r(e1, e3), e(k, e1), e(k, e2), e(e1, e1), e(e2, e2), e(e3, e3), e(k, k)}

And this leads to the following ground inconsistencies with N ′

• → r(k, e2), e(k, e2)

• → r(k, e3), e(k, e3)

• r(e1, e2), e(k, e1)→ r(k, e2)

• r(e1, e3), e(k, e1)→ r(k, e3)

• r(e1, e2), e(e1, k)→ r(k, e2)

• r(e1, e3), e(e1, k)→ r(k, e3)

And that this can be solved for zero cost by adding {r(k, e2), r(k, e3)} to N ′.

4.4.12: Algorithm to convert first-order logic problem to simple logic
Input: A network N ∈ N(E′, R) and a set of first order logic statements Tfirst,
and cost function on N(E′,R), c(. . .)
Output: A networkN ′ ∈ N(E′∪K,R∪{e}), with a corresponding cost function
c(. . .) and a set of ground instances Tsimple

1. Skolemize:

(a) Replace all instances of ∃ with appropriate skolem functions.

(b) Rearrange the formulae into CSNF, and add all ground instances to
Tsimple.

2. Find the set K which corresponds to all ground instances of functions.
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3. Introduce all ground instances of constant axioms to Tsimple as in defi-
nition 4.3.8.3. Note the axioms 6 and 7 must be introduced as ground
instances as per definition 4.3.8.4.

4. If necessary, introduce functional axioms as in definition 4.4.6 to Tsimple.

5. For each k ∈ K calculate the utility of k with each element e′ ∈ E′ as per
definition 4.4.9.

6. Form N ′ by adding all links e(k, e′) and e(e′, k), which have maximum
utility.

7. Add all links of the from e(e′, e′), where e′ ∈ E′ ∪K to N ′.

8. Calculate and add the new values to the cost function for links e(e′, k)
where e′ ∈ E′ and k ∈ K by c(e(e′, k)) = ε×utility(e′, k) and set the cost
of all other links not defined by the original cost function to 0.

4.4.2 Conversion from OWL

I shall now present the methodology that can convert an ontology written in
OWL into a sequence of statements that can be used with my system to develop
or expand the ontology. I shall start with classes, which are defined in OWL5

as

<owl:Class rdf:ID="classID"/>

For each such statement I create a unary relationship classID(·). It is then pos-
sible to make certain statements about classes, firstly the subClassOf statement
is written as

<owl:Class rdf:ID="subClass">
<rdfs:subClassOf rdf:resource="superClass"/ >
</owl:Class>

These statements convert to a rule

subClass(x)→ superClass(x)

Similarly the disjointWith statement such as

<owl:Class rdf:ID="class">
<owl:disjointWith rdf:resource="otherClass"/>
</owl:Class>

Translates to
class(x), otherClass(x)→

I also translate the equivalentClass statement similarly
5Using the XML notation for OWL
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<owl:Class rdf:ID="class">
<owl:equivalentClass rdf:resource="otherClass"/>
</owl:Class>

Becomes the following two rules

class(x)→ otherClass(x)
otherClass(x)→ otherClass(x)

I then define each property as a relationship taking two parameters, and I can
then state logical rules to define their domain and range for example

<owl:ObjectProperty rdf:ID="prop">
<rdfs:domain rdf:resource="domainClass">
<rdfs:range rdf:resource="rangeClass">
</owl:ObjectProperty>

Gives the following rules

prop(x, y)→ domainClass(x)
prop(x, y)→ rangeClass(y)

I also define the subProperty and equivalentProperty as I did for the same
properties of classes and the inverse property as in

<owl:ObjectProperty rdf:ID="prop">
<rdfs:domain rdf:resource="domainClass">
<rdfs:range rdf:resource="rangeClass">
<owl:inverseOf rdf:resource="inverseProp">
</owl:ObjectProperty>

Is defined as
prop(x, y)→ inverseProp(y, x)
inverseProp(x, y)→ prop(y, x)

There are also a number of special properties for relationships for example

<owl:ObjectProperty rdf:ID="prop">
<rdfs:domain rdf:resource="domainClass">
<rdfs:range rdf:resource="rangeClass">
<rdf:type rdf:resource="&owl;TransitiveProperty">
</owl:ObjectProperty>

I translate these as follows

• TransitiveProperty: prop(x1, x2), prop(x2, x3)→ prop(x1, x3)

• SymmetricProperty: prop(x1, x2)→ prop(x2, x1)

• FunctionalProperty: → prop(x1, f(x1))

• InverseFunctionalProperty: → prop(f(x1), x1)
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• AsymmeticProperty6: prop(x1, x2), prop(x2, x1)→ e(x1, x2)

• ReflexiveProperty6: → prop(x1, x1)

If there is a class that is defined by Restriction it is necessary to convert this
as well, for example OWL often uses the following formulation

<owl:Class rdf:ID="class">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#prop"/>
<owl:hasValue rdf:resource="#obj"/>
</owl:Restriction>
</owl:subClassOf>
</owl:Class>

This can easily be translated to a statement such as

prop(x, “obj”)→ class(x)

Similarly it is easy to create rules for the similar restrictions allValuesFrom and
someValuesFrom. Another two restrictions of particular interest are minCardinality
and maxCardinality. These are easily representable but can often lead to long
clauses, in normal first order logic the minCardinality is n restriction can be
stated as

∀y∃x1, . . . xn : prop(y, x1) ∧ . . . ∧ prop(y, xn) ∧ x1 6= x2 ∧ . . . ∧ xn−1 6= xn

This gives a large number of clauses of the form

→ prop(y, f1(y))
...

→ prop(y, fn(y))
e(f1(y), f2(y))→

...
e(fn−1(y), fn(y))→

Similarly the maxCardinality restriction translates to first-order logic as

∀y 6 ∃x1, . . . xn+1 : prop(y, x1) ∧ . . . ∧ prop(y, xn+1) ∧ x1 6= x2 ∧ . . . ∧ xn+1 6= xn

Which instead translates into CSNF as a single long clause of the form

prop(y, f1(y)), . . . prop(y, fn+1(y))→ e(f1(y), f2(y)), . . . e(fn(y), fn+1(y))

Finally I define the instances of the ontology as the basis for the set E, and
I say that for instances the OWL elements differentFrom and AllDifferent
give simple statements of the form

e(x1, x2)→

As such it should be clear that I can efficiently covert an OWL ontology into a
set of CSNF formulae that can be used with my ontology discovery system.

6OWL 2 Only
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Summary

I extend simple logic into a particular form of first-order logic, which is called
Conjunctive Skolem Normal Form. I then make a closed world assumption,
that all functions and constants map uniquely to an element of E, and define a
specific relation e, which represents equality in my system. Then by introducing
a number of axioms I show how the CSNF rules can be converted into a set
of simple logic rules. This means that the system can approach a first-order
problem under these assumptions in the same way as a simple logic problem, so
if for example the initial set of restrictions were inconsistent then a contradiction
would occur as in example 4.3.5.14. Finally I show how it is possible to convert
the statements of OWL into a set of CSNF rules.



Chapter 5

Results

5.1 Pattern system and synonymy

I will start by presenting the work published in McCrae and Collier [2008]1.
In that paper I showed one of the first principles that motivate the need for
the need for good automatic ontology construction, and that is that a lot of
extant resources do not cover the kinds of terms seen in real data very well.
In order to show this I first obtained the 150 top ranked PubMed abstracts
for the keywords “infectious disease”. I then went through these documents,
extracted all medical terminology and grouped these according to which sets of
terms were synonymous. This is not totally straight-forward as there are many
aspects with terms being close or nearly exactly synonymous but not quite. I
found that the following issues were common among the terms I saw:

• Modifiers: This is the inclusion of an adjective modifier in a term. For
example the term “acute headache” is not the same as “headache” al-
though it is nearly synonymous. I decided that it was better in general
to view these terms as not synonymous as their meaning is not the same.
It is important not to confuse this with modifiers that are intrinsic to the
meaning of a term such as “mental retardation”.

• Granularity: This covers cases where terms are nearly always used syn-
onymously but have slight differences in their meaning. For example the
term “HIV-1” is the most common strain of “HIV”, and as such they gen-
erally refer to the same thing, as “HIV-2” is less easily transmitted and
mostly confined to a small area of West Africa. Again I decided not to
count such terms as synonymous.

• Property: This means that two terms refer to the same thing but with a
slightly different property, for example “dengue shock syndrome” is a late
stage development of “dengue fever”, as these are the same disease but
differ in severity, I decided that these terms are not synonymous.

1http://www.biomedcentral.com/1471-2105/9/159

97



98 CHAPTER 5. RESULTS

Precision Recall F-Measure Coverage
Wikipedia (redirect) 46.4% 18.8% 26.8% 54.1%
Wikipedia (search) 40.1% 24.6% 30.9% 56.1%
WordNet 100% 6.9% 13.0% 38.0%
Medline Encyc. 66.7% 4.0% 7.5% 28.1%
MeSH 61.6% 15.8% 25.2% 55.1%
UMLS 94.0% 46.5% 62.3% 79.7%

Figure 5.1: Encyclopedia Results

In total from the 150 documents I found 301 terms, which I grouped into
221 synonym sets, representing 101 synonym links. A second annotator also
performed the same task and I found that there was an inter-annotator agree-
ment (Cohen’s agreement) of κ = 68.6%. I then looked at how well these terms
were represented by various resources, firstly WordNet, then two specialised
domain thesauri MeSH and UMLS. I also used two general knowledge sources
the layman-orientated Medline encyclopedia and Wikipedia, which were not
designed as thesauri so I needed some manipulation to extract this information

• Wikipedia (redirect): Wikipedia includes redirect tables that allow
the system to redirect users to a single page based on several queries. For
example searching Wikipedia for “WNV” and “West Nile Virus” both
direct to the same page.2

• Wikipedia (search): This uses the top result based on Wikipedia’s
search engine, I assume two terms are synonymous if they have the same
top result.

• Medline encyclopedia: The articles in this encyclopedia have an “Al-
ternate names” field I used as a basis for this method.

I then took the term pairs and used these resources to see how well it matched
the manual extraction.

In figure 5.1 I show the results for these information sources based on their
precision, recall and F-Measure and coverage that is the number of terms for
which they had a reference for.

Then I used the BioCaster ontology [Collier et al., 2008] to extract a set
of seed terms, which is an ontology which specialises in disease outbreak and
so should be reasonably close to the extracted data. The BioCaster ontology
contained 450 terms, grouped into 244 synsets, giving 477 synonym pairs, of
which 35 terms and 16 pairs were also in my manually extracted set. I then
used the total set of 751 terms to extract a corpus by querying PubMed for
each term and taking the top 250 abstracts for each term. This gave a corpus of
83,492 documents constituting 1,506,402 sentences of which 46,216 contained a

2Disclaimer: Wikipedia changes constantly, the example was checked and works on
24/4/09
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term pair from one of the sets. I first examined the effect of just examining the
co-occurrences of these terms, I found that out of all possible pairs of terms in
the manually-extracted set that only 1.7% of occurrences were of synonymous
terms. This demonstrates the need for patterns to identify those terms which
are actually synonymous, I also found that 63.4% of the manually extracted
synonym pairs were in the corpus. I then applied the methodology of section
3.1 to extract patterns from this set using the set of synonym pairs from the
BioCaster ontology as my seed pairs. Table 5.1 presents some of the highest
scoring patterns for synonyms with some examples of the extractions given.
I used several statistical classification methods to examine the ability of the
statistical classifier to output the results based on the manually extracted set,
these are presented in table 5.5, these classifiers are SVM and Logistic Regression
as I have already discussed, In all cases I used the WEKA3 implementations to
perform the classification.

I reviewed the results based on their performance and it was clear that the
support vector machine produced by far the strongest result and had a very
high precision, which meant that it was far more likely that the results it was
producing were correct. Also the support vector machine approach can be
adapted to use logistic regression, which means that a better estimate of the
output probability can be obtained. This is highly advantageous as the logical
consistency system works requires estimates of the probabilities to work well.

I then used algorithm 4.2.1.16 (Set Branch and Bound) to find the optimal
way to group these into synonymy sets. Using the results from the SVM classifier
I found that the precision was slightly decreased from 74.1% to 73.2%, however
the recall improved from 22.8% to 29.7%, increasing the overall F-Measure to
42.3% from 35.7%. In figure 5.4, I plotted the result of stopping the algorithm
at iterations before it found the optimal solution, I calculated the theoretical
cost function as defined in section 4.1.2 and compared it with the actual F-
Measure. This result shows that as the solution method finds a “theoretically”
better solution this corresponds to better actual results.

In figure 5.3, I analysed the errors of the extractions splitting them into the
following classes

• Modified: The term pair differed by inclusion of a modifier.

• Variant: The terms were closely related, normally this meant they were
organism of the species or disease caused by the same agent.

• Method of Transmission/Point of Infection: These terms differed
by the method of transmission or point of infection.

• Agent/Disease: The terms were an agent and the disease caused by that
agent.

• Hypernym: The terms were hypernyms (and not of any other class men-
tioned).

3WEKA is available at http://www.cs.waikato.ac.nz/ml/weka/
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[ “CA-MRSA”, “community-acquired MRSA”, “methicillin-resistant Staphylo-
coccus aureus”, “MRSA”, “methicillin-resistant Staphylococcus” ] – MoT/PoI
errors
[ “Litopenaeus vannamei”, “shrimp” ] – Hypernym relations
[ “Yersinia pestis”, “Plague” ] – Disease/Agent errors
[ “dengue shock syndrome”, “DHF”, “dengue hemorrhagic fever”, “dengue”,
“dengue fever” ] – Variant terms
[ “rubella”, “mumps”, “measles” ] – Other relation (there is a widely-used triple
vaccine for these diseases)

Figure 5.2: Example Output from pattern-extraction system

Correct Modified Variant
Binary 40.8% 1.4% 7.5%
Synset 39.5% 0% 12.1%

MoT/PoI Agent/Disease Hypernym Error
7.5% 12.9% 2.0% 29.3%
9.9% 17.6% 3.3% 17.6%

Figure 5.3: Analysis of Errors (from McCrae and Collier [2008])

• Error: No semantic relation between the terms.

These results show that compared to the result from just the statistical classifier
(“Binary”), the logical consistency algorithm managed to reduce the number
of errors in all classes, especially for the case when the terms had no semantic
relation. Finally, figure 5.2 shows a sample of the system’s output, showing both
correct matches and some erroneous ones labelled with the categories above.

5.2 Relation Extraction

I wish to test the join-set methodology I developed in section 3.2, I do this by
attempting to extract two relations synonymy and hypernymy. I also choose to
focus on a particular sub-domain of disease. I start by collecting a set of terms,
for this I use all terms, which are hyponyms of “disease” in WordNet. This
gives a set of 1152 terms, I then use WordNet to create a list of synonym and
hypernym pairs between these terms. In total there are 7150 hypernym term
pairs 3814 synonym term pairs. I then collected a corpus by downloading a
set of document from PubMed which include the terms, by the same method as
before. I then obtained a corpus of 22895 documents constituting approximately
15 million words, and identified all terms using the method described in section
3.2.1. In figures 5.6 and 5.7 I show the occurrences of each term pair in the
corpus, and find that the overwhelming majority of these term pairs do not
occur in the corpus, in fact only 314 synonym pairs and 299 hypernym pairs
are found in the corpus. We also see that only 63 hypernym term pairs and
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Figure 5.4: F-Measure versus theoretical cost (from McCrae and Collier [2008])

Precision Recall F-Measure
Baseline 1.7% 63.4% 3.3%
Näıve Bayes 30.6% 37.5% 33.8%
Logistic Regres-
sion

40.3% 29.7% 34.2%

C4.5 74.1% 21.3% 33.1%
SVM 82.2% 22.8% 35.7%

Figure 5.5: Results by classifiers
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Figure 5.6: Frequency of synonym pairs from “disease” in PubMed corpus

Figure 5.7: Frequency of hypernym pairs from “disease” in PubMed corpus
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111 synonym term pairs occur more than 10 times. I then used the process as
in definition 3.1.3 to create a set of base patterns, giving 2176 base patterns
for synonymy and 1522 base patterns for hypernymy, I then calculate all join-
sets of these patterns giving 1814 new pattern for synonymy and 3835 patterns
for hypernymy. In comparison to the method not using join-sets there were
9747 patterns for hypernymy that would be generated and 13932 for synonymy.
This represents a large reduction of the search space for both relations, in fact
87.0% for synonyms and 60.7% for hypernymy, which clearly shows the value of
using join-sets. Then I chose to take only those patterns which match at least 3
contexts and have a precision greater than 10%, this drastically cuts down the
number of patterns to 10 synonym patterns and 45 hypernym patterns. These
patterns were then used to create vectors, and an SVM was trained using the
matches between the seed terms as the training data. I then applied this to
all the extracted vectors and manually evaluated the correctness of the result,
finding that for hypernymy I extracted 127 term pairs of which 80 (63.0%)
were correct and of those 47 were not in the original training set (58.8%), for
synonymy I found only 16 term pairs, 9 of which were correct (56.3%) and 6
were new (66.7%).

These results were not particularly strong so I decided to repeat the experi-
ment this time adding the new terms (regardless of whether they were correct or
not) as new training data and then used these results to further expand the sets.
Figures 5.8 and 5.9 show the results at every iteration, the results are improved
for synonymy which by the final iteration has improved to finding 93 terms of
which 61 (65.6%) are correct 53 (86.9%) and were not in the original set. The
results for hypernymy improve for the first couple of iterations producing 184
term pairs (107 correct and 78 new), before slightly decreasing.

I then ran the same system on a larger corpus using more term pairs. I took
all term pairs from WordNet, which are hyponyms of the term “organism”,
which gave a total of 35,718 terms, with a total of 32,247 synonymous term
pairs and 527,985 hypernymous term pairs. I then collected a corpus, consisting
of the documents from the Wikipedia 2009 DVD collection4, which gave a total
corpus of about 28,000,000 words. I then used these terms as seed term pairs
and used the pattern based extraction system of section 3.2 to extract term
pairs for both synonymy and hypernymy, these values were then compared to
WordNet, so it is likely that the precisions reported are lower than actually
obtained due to correct synonym/hypernym pairs being absent from WordNet.
Then I used the equivalence logic (see figure 5.11) on the synonym results, to
form a consistent network and similarly the hierarchical logic (see figure 5.11) on
the hypernym results, and the Equivalence-Hierarchical logic (see figure 5.11)
on both sets. In figure 5.10 I show the results of this analysis, and it is clear
to see that for both hypernymy and synonymy applying the logic consistency
algorithm improves the overall performance (from 67.1% to 68.7% and 47.6%
to 49.6% respectively). The number of synonym term pairs extracted is much
lower however it should be noted that both this is probably related to the

4Available at http://schools-wikipedia.org/
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fewer number of seed term pairs for synonymy, and as such the lower number
is due to the much lower number of synonym pairs that could be extracted.
For the combined system I show the result obtained from separately applying
equivalence logic to the synonym results and hierarchical logic to the hypernym
system compared to applying the equivalence-hierarchical logic. These results
show that applying the logic method separately improves the result from 66.2%
to 67.80% and by applying the combined logic it improves to 67.84%, which is
a slight improvement but cannot be considered significant.

5.3 Algorithmic complexity results

5.3.1 Simulation Method

To test my method I require that I have a methodology that can create a data
that resembles the expected output of the pattern extraction system. Firstly I
start with a network, N , which is consistent with a set of restrictions, T . How-
ever it is desirable that this network has a similar density to actual ontologies, I
define this by the use of a value called connectivity, which is defined as the net-
work, where n−c of the elements are in the network, where c is the connectivity.
I use this rather than a straight percentage as there are a number of interesting
properties of this value which come from the theory of random graphs. First, it
should be rather obvious that for c > 2, the random graph generated will not
contain any links as there are n2 links.
Theorem: If G is a graph generated with probability n−c, define a connected
component as a subset of the nodes of G, such that there is a sequence of links
in G connecting each element of the subset. Denote the size of the largest
connected component as lcc(G). Then as n→∞, then

P (lcc(G) > k)→ 1 for c > 1
k+1

P (lcc(G) < k)→ 0 for c < 1
k+1

This theorem states that if c = 1
k+1 , then it is highly unlikely that there

will be a larger connected component than one of size k, which helps limit the
complexity of the model. Another related result also states that the graph is
likely to become completely connected when the value of c = lnn

n . The proof of
both of these results can be found in Spencer [2000].

I can simply generate a network at random by saying that r(e1, e2) ∈ P with
probability n−c, and then require that a network is found that is consistent with
the network. I use the GSAT algorithm to find a network but I slightly modify
it so that step 2a now reads

2a. Choose the link r(e1, e2) which maximises

c(r(e1, e2))consist− gainN (r(e1, e2))

If the maximal value for consist−gainN (r(e1, e2)) is zero or negative
then fail. If multiple such links exist choose one at random.
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This removes the worst part of the computational aspect from GSAT, that is
“flipping” links at random until it can find a way to make process. I then
generate a consistent network in the following way
Algorithm
Input: A connectivity value c, node count n and set of ground instances T .
Output: A network, N consistent with T .

1. Generate a random network N0 with n1−c links.

2. Use modified GSAT algorithm (algorithm 4.3.7.9) to find a network N . If
the GSAT algorithm failed go to step 1 otherwise output N .

I now need to generate some probability values from my method, which I do
by generating an evidence value, which I assume is distributed normally with
mean µ0 or µ1 and variance σ0 or σ1, where µ1 is the value for links r(e1, e2) ∈ N
and µ0 for values r(e1, e2) 6∈ N , a σ0 and σ1 the standard deviation. I then use
this value to train a logistic regression system and use this to create probability
values much like the actual process. I can change the values of µ0 and µ1 to
adjust the values of the precision/recall of the data and I shall assume that
µ1 > µ0. Firstly I shall assume that the logistic regression procedure finds the
optimal decision boundary x = φ given by

p(r(e1, e2) ∈ N)P (φ|r(e1, e2) ∈ N) = p(r(e1, e2) 6∈ N)P (φ|r(e1, e2) 6∈ N)

This can be then be restated as

n−c

σ1

√
2π
exp(− (φ− µ1)2

2σ2
1

) =
1− n−c

σ0

√
2π

exp(− (φ− µ0)2

2σ2
0

)

This can be simply rearranged into a quadratic equation in φ and the boundary
value found. I shall use Φ to denote the cumulative density function of the
normal distribution with mean 0 and SD 1 i.e.,

Φ(x) ≡
∫ x

−∞

1√
2π
exp(−x

2

2
)

It can now be said that the expected number of true positives is given by

T̂P = nc+1(1− Φ(
φ− µ1

σ1
))

And the expected number of false negatives given by

F̂N = nc+1Φ(
φ− µ1

σ1
)

And the expected number of false negatives given by

F̂P = (n2 − nc+1)(1− Φ(
φ− µp
σ0

))
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I can now use these values to calculate suitable values of µ0,µ1,σ0 and σ1 to
achieve suitable values for the error rates. The formulae I presented are not
easily solved algebraically so instead I simply use gradient descent to efficiently
calculate suitable values. Once these values are calculated, it is easy to create a
simulated network with probability values for each particular link, by training
a logistic regression classifier with a random set of data, generating evidence
values for each link and using the classifier to gain output probabilities.

5.3.2 Simulation results

For equivalence methods I have a several algorithms that I have already men-
tioned in this paper to compare to. I shall briefly recap them:

• Greedy Sets (Algorithm 4.2.1.1) This is a basic method of greedily
adding sets until it finds an exact cover of the problem.

• Set Branch and Bound (Algorithm 4.2.1.16) This is an improvement
on the Greedy Sets algorithm, which uses several optimisations, and then
covers the search space using a Branch and Bound methodology. It finds
the optimal solution.

• Greedy Construction (Algorithm 4.3.2.3) This is a simple approach
based on using the equivalence and adding the link consistently until a
network is obtained.

• NoRes Relaxation (Algorithm 4.3.4.4) This algorithm introduces
negative value in later iterations to build a matrix, which ensures con-
sistency with all rules. It produces an optimal solution.

• Resolution Relaxation (Algorithm 4.3.5.8 and 4.3.6.6) This algo-
rithm grows a matrix by using resolution, it then applies an extra stage
of matrix reductions, which are not available to the NoRes Relaxation
Algorithm. It produces an optimal solution.

• GSAT (Algorithm 4.3.7.8) This algorithm works by flipping a link one
at a time in a greedy manner until it reaches a consistent solution.

I present these methods over results using three different set of axioms shown
in figure 5.11

Figure 5.12 shows the F-Measure based on simulate data for the equivalence
logic, these results are all averaged on 10 runs. The baseline value is labelled
“Baseline” and is the result with no attempt to improve the result, I generate
this around 85% mark and as can be seen the simulate data generator is reason-
ably good at finding a network that is approximately 85% correct. My results
are all averaged over 10 runs for each system, and the line labelled “Optimal al-
gorithms” covers the algorithms “Set Branch and Bound”, “NoRes Relaxation”
and “Resolution Relaxation”, all of which produce the same optimal solution
as defined in definition 4.3.1.7. I conclude from this result, that “Greedy Sets”
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algorithm produces the poorest result, often not improving significantly on the
base-line value, this is due to its simple approach and tendency to ignore large
values. A better result is obtained from the “Greedy Construction”, which
produces between 90% and 95% accuracy which is good but still significantly
lower than the true optimal value. Finally, the results show that the “GSAT”
algorithm is consistently poorer than any of the exact algorithms, however it is
often within a few percentage points. As expected in all cases the highest value
is gained by exact algorithms.

Figure 5.13 shows the computation times for each of these algorithms, and
there is one immediately surprising result and that is the very high computation
times for “Greedy Construction”, which is a polynomial time algorithm! In fact,
this is not hard to explain as one of the aspects, which this algorithm has to
perform is a consistency check at each iteration, and as the equivalence logic is
being used, there is a clause

r(x1, x2), r(x2, x3)→ r(x1, x3)

This clause has n3 ground instances, and each of these instances must be checked
to see if they have become inconsistent at every iteration of the algorithm. Fur-
thermore this algorithm starts out with N = ∅ and it needs to individually add
each link to its final network, this means that this algorithm actually needs to
do a lot more work than some of the other algorithm. The other algorithms all
have very short run times, all far under 1/10th of a second, it can be seen that
these results seem to correspond to the following order: “GSAT” is the slowest,
followed by “NoRes Relaxation”, then “Set Branch and Bound”, then “Resolu-
tion Relaxation” and finally “Greedy Sets”. It should perhaps be no surprise
that the algorithm, which produced the worst accuracy is also the quickest, and
it does not have the problems of “Greedy Construction” as it does not need to
evaluate logical statements as they are incorporated into the operation of the al-
gorithm. Furthermore the extra matrix reductions that “Resolution Relaxation”
has over “NoRes Relaxation” offer notable improvements in performance.

I also repeated the results for the other two logics. Figure 5.14 shows the
F-Measure results for the hierarchical logic, for which I cannot apply methods of
Greedy Sets and Set Branch and Bound, as these are specific to the equivalence
logic. There are two differences in the results, firstly it can be seen that the
Greedy Construction algorithm actually managed to perform worse than the
base line, this is surprising but can probably be explained by the system picking
up high scoring links too early which are not part of the actual optimal solution.
The performance of the GSAT algorithm is also much closer to the optimal
solution, in fact for n < 60 the GSAT algorithm is exactly on the optimum,
and for higher n, the results are within 0.1% of the exact solution, which, as
the results are averaged on 10 simulations, suggests that in nearly all runs
the GSAT algorithm reached the optimal solution. Looking at the results for
computation time over the same run in figure 5.15, the results echo those of the
equivalence logic, in that Greedy Construction is much slower and then GSAT,
then NoRes-Relaxation and finally Resolution-Relaxation. Finally I apply the
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results to the combined Equivalence-Hierarchical logic, which is a model of the
structure used by WordNet. In figure 5.16 the accuracy results are as expected
a blend of the results we saw previously, again GSAT is very close to the optimal
solution with similar differences of approximately 0.1%, the Greedy Constructor
is closer to the baseline than in the hierarchical logic, but still mostly performs
worse than the baseline. More interestingly the computation time in figure 5.17
show a very large spike for n = 90 and n = 95, this seems to affect all the
algorithms, but mostly the Greedy Construction algorithm which increase to
a rather high 10.75 seconds, this is assumedly due to the need for searching
for consistency checks. As I have already mentioned the Greedy Construction
algorithm checks for inconsistencies at every iteration, in contrast the GSAT
algorithm checks periodically preferring to keep a possibly inaccurate set of
inconsistencies in its gain/loss sets, and the relaxation methods may only check
twice, once to build the initial matrix and once to check the first solution is
consistent. To test this hypothesis I decided to profile a run where the Greedy
Construction algorithm took a significant amount of time. In this run I found
that the Greedy Construction algorithm took 16.37 seconds to complete5, during
its run it checked for inconsistent rules 101 times, taking 14.92 seconds in total
(91.2%).

In figure 5.18, I compare the performance of the algorithms for larger values,
it is clear that the Greedy Construction algorithm is not worth including in the
analysis. These results show as before that the NoRes-Relaxation algorithm is
significantly slower than the version that uses resolution. There is one inter-
esting result though as for values near a 1000 the GSAT algorithm starts to
become noticeably faster than the exact method of Resolution-Relaxation. This
is not totally surprising, as the increased complexity of the problem as it grows,
probably means the approximate algorithm becomes slightly more robust. Fig-
ure 5.19 shows that the quality of the GSAT algorithms approximation remains
roughly constant in spite of the increase in complexity of the problem.

5There are significant overheads to using a profiler
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Figure 5.8: Extracting synonymous disease terms from PubMed corpus by iter-
ation
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Figure 5.9: Extracting hypernymous disease terms from PubMed corpus by
iteration

Links Correct Incorrect Precision
Hypernym (before) 3941 1929 67.1%
Hypernym (after) 3814 1738 68.7%
Synonyms (before) 139 153 47.6%
Synonyms (after) 136 138 49.6%
Both (before) 4080 2082 66.2%
Both (separate) 3950 1876 67.8%
Both (together) 3919 1858 67.8%

Figure 5.10: Accuracy of pattern based extraction before and after applying
logical consistency algorithms
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Equivalence Logic:

• r(x1, x2), r(x2, x3)→ r(x1, x3)

• r(x1, x2)→ r(x2, x1)

• → r(x1, x1)

Hierarchical Logic:

• r(x1, x2), r(x2, x3)→ r(x1, x3)

• r(x1, x1)→

Equivalence-Hierarchical Logic:

• r1(x1, x2), r1(x2, x3)→ r1(x1, x3)

• r1(x1, x2)→ r1(x2, x1)

• → r1(x1, x1).

• r2(x1, x2), r2(x2, x3)→ r2(x1, x3)

• r2(x1, x1)→

• r2(x1, x2), r1(x2, x3)→ r2(x1, x3)

• r2(x1, x2), r1(x1, x3)→ r2(x3, x2)

Figure 5.11: The Hierarchical, Equivalence and Equivalence-Hierarchical Logics
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Figure 5.12: Analysis of accuracy results of Algorithms on Equivalence Logic

Figure 5.13: Analysis of computation times of Algorithms on Equivalence Logic
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Figure 5.14: Analysis of accuracy results of Algorithms on Hierarchical Logic

Figure 5.15: Analysis of computation times of Algorithms on Hierarchical Logic
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Figure 5.16: Analysis of accuracy results on Equivalence-Hierarchical Logic

Figure 5.17: Analysis of computation times of Algorithms on Equivalence-
Hierarchical Logic
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Figure 5.18: Analysis of computation times of Algorithms on large sets

Figure 5.19: Analysis of accuracy results of GSAT on large sets



Chapter 6

Conclusion

In this paper, I considered the problem of extracting ontologies from free text,
and ensuring that the extracted ontologies created have a certain structure. My
methodology for this is to create patterns, and use these to create vectors which
can be used with a statistical classification methodology to give a probability
that a term pair is related. These probabilities give a network, however as
the result is noisy and incomplete, it is unlikely that it will match the known
structure of the ontology. I encode the structure of the ontology as a list of
axioms, and then I define the problem of finding the correct network or ontology
as finding the network which is most likely, given the probability values, and
is consistent with all the axioms. I approach this by viewing this as a number
of “corrections” that need to be made to the network, where the “corrections”
are adding or removing links from the network with least probability until a
consistent network is achieved. I show that these corrections can be tabulated
into a matrix and the problem then converted to that of a integer programming
problem, however this by itself is not sufficient to guarantee a consistent solution.
I show how the matrix can be extended further by the use of resolution, which
I show can generate the optimal consistent network. Finally I expanded the
form of logics into a form called Conjunctive Skolem Normal Form, which is
equivalent to first-order logic and show that this can be converted back to a
simple logic form, which my algorithm, with only minor modification, can solve.

The first part of my system is the pattern extraction system, initially I based
it on the WHISK system of Soderland [1999]. My system is presented in section
3.1 and I applied it to the problem of extracting synonyms from free text. As
this system is not easily capable of dealing with multi-word terms I instead
ran it on a pre-determined set of terms, so the system did not have to tag the
corpus or use any other linguistic resource. The results from this data was
very high, scoring an F-Measure of 35.7%, which was significantly higher than
the result I obtained for most existing resources. In fact the only resource that
out-performed it was the meta-thesaurus UMLS, which combines many thesauri
into a single thesaurus, and my method still out-performed one of its component
MeSH. This is quite satisfying as MeSH is itself a very complete thesaurus

117
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and took many millions of man-hours to compile, where as my system took
only 51 hours to complete. Furthermore, my system was capable of discovering
synonymous pairs that were entirely absent from these resources and the recall
of the system was, while low at only 29.7% still significantly higher than that
of MeSH or Wikipedia and is strong enough for practical purposes. As such
it is valid to conclude that this kind of methodology can be useful for creating
new thesauri for domains or languages where resources of the scope of MeSH
or UMLS do not exist, or for finding new terminology for the expansion of a
resource like MeSH and UMLS.

The primary problem I discovered with the first system was that it found a
strong pattern it would then create a huge number of minor variations of these
patterns, which matched the same set or nearly the same set of contexts. As
such this meant that the methodology spent a lot of its computation time on
developing patterns which would not contribute to the overall effectiveness of
the algorithm. I solved this by considering the match set of a pattern, that is
the number of contexts from the corpus that it matches. The results of section
3.2.2 show that there is a connection between this concept of join-set and the
alignment of two patterns, and as such I developed a new algorithm, which could
find patterns by finding alignments between patterns. The results I obtained
show that this method can reduce the size of the search space by 50-95%, while
not removing any “useful” patterns from the search space. Furthermore I used a
method based on tagging the corpus to identify terms, which allows for patterns
to be developed which can find relationships between terms, not previously
manually identified. This makes the system much more flexible but required a
more complex rule language, for which I take the SRL language. In addition
the join-set methodology allows for more complex rule matching elements based
on features of the text such as orthographic elements or fixed list of words.

The next part of the problem is finding an ontology from the extracted rela-
tions. This is necessary due to the unreliable nature of the extraction systems
and can be done by encoding the structure of the ontology as a set of axioms.
Initially, I tackled the problem of synonym set structures and here the axioms
suggest that the form of these is as a set of disjoint sets. This leads to a number
of algorithms that can efficiently solve the problem. First, I present in section
4.2.1 a number of basic approaches to the problem such as greedy search and
branch and bound search. These are methods, which are applicable to a wide
range of problems, however the former often produces very poor solutions and
the latter can quickly become intractable with the number of terms I expect to
see. As such I decided to approach this by finding which sets were more likely
and which sets could not possibly be part of the solution method. This leads to
a much more efficient solution method. Then I present a method for represent-
ing the search space on these sets as a integer programming problem, which is
useful as it allows for a relaxed version of the problem. Relaxing a problem is
often highly advantageous as it allows for the “easy” parts of the problem to be
solved efficiently and reduces the amount of work the non-polynomial parts of
the algorithm have to perform (in fact often to zero). This algorithm was ap-
plied to the data extracted in McCrae and Collier [2008] and I found that there
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was a significant increase in the performance of the result. I found that this
increased not only the overall performance but was also effective for increasing
the “marginal” performance, in that it removed more term pairs that were not
semantically related than those which had some kind of semantic relation.

The next step is to look at different structures given by different relations.
Another important relationships is hypernymy, which is a hierarchical relation-
ship. While, it would be possible to develop a methodology adapted to hyper-
nymy as I did for synonymy, in fact the straightforward approach is to ensure
that each “chain” is complete: that is logic statements such as the following
hold

r(e1, e2) ∧ r(e2, e3)→ r(e1, e3)
r(e1, e3) ∧ r(e3, e4)→ r(e1, e4)

r(e1, e2) ∧ r(e2, e3) ∧ r(e3, e4)→ r(e1, e4)

In fact it is easy to see that third rule is in fact the resolvent of the first two,
as such it is clear that developing all possible “chain” conditions, is the same
as resolution. Furthermore, resolving all such “chain” rules is generally not
possible so instead I developed a methodology that only resolves these rules as
necessary. This method as presented in section 4.3 has the benefit of not begin
limited to hypernymy but applicable to a much wider range of ontology struc-
tures. As with synonymy I found it efficient to convert these rules into a matrix
form so the search space could be solved as an integer programming problem and
then relaxed to an linear programming problem. I also observed that the matrix
could be reduced by the use of simple reduction to remove rules, which cannot
contribute of the optimal solution. This essentially means that the algorithm is
in fact three algorithms of increasing complexity which solve parts of the prob-
lem, first the reduction algorithms solves the trivial parts of the problem, then
the linear programming algorithm solves the parts of the problem, which can be
handled in linear time, and finally a branch and bound methodology solves the
remainder. For comparison I developed two other algorithms, one which creates
a matrix without the need for resolution and while this algorithm is of interest,
it is fundamentally worse than the resolution based method, as its rule adding
procedure is not noticeably more light-weight and it cannot apply the same re-
duction principles. Finally, I showed how the method could be approached as a
MAX-SAT problem, and although this creates several problems, I show how a
well-known algorithm called GSAT can be adapted to handle the problem.

To evaluate the effectiveness of the algorithms for logical consistency, it
would not be possible to use just the data from the pattern based extraction
system and for this reason, I evaluated all the systems on simulate data. The
results for synonymy confirm that greedy approaches produce poor results but
can be very fast, as shown by the performance of the Greedy Sets algorithm.
The Greedy Branch-and-Bound method did not implement linear relaxation, to
show the effect this has on the solution and as expected this means that the
method takes slightly longer. Comparing the results of the NoRes-Relaxation
and Resolution-Relaxation algorithms, it is clear to see that the effect of the
matrix reduction produce a significant increase in performance. Perhaps the
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most interesting result though was that the Greedy Construction algorithm al-
ways took so long to calculate. As this is a greedy algorithm, it is expected
that it could efficiently find a suboptimal solution, however in fact not only was
the solution poor, the algorithm was very slow. My results show this is nearly
entirely to due with the cost of finding inconsistent ground instances, which
takes a long time as the number of clauses that exist is often in the millions.
The GSAT algorithm was a powerful approximation method, and I discovered
that for the most part it could find a solution that was reasonably close to the
optimal solution, my results show that for small sized problems its performance
is worse than the exact methods, but for larger values (of the order of thou-
sands of elements), the GSAT algorithm has slightly better performance with
little degradation of its approximation ratio. The GSAT method does have a
fundamental problem in that it is not guaranteed to terminate, although in no
run did this occur.

I applied the systems I developed to the real world problems of extracting
synonymy and hypernymy. I chose these relations as they have strong structure,
interdependence and are easy to extract from raw text, although my system is
also applicable to a wide range of other relations. Firstly I applied my initial
system based on patterns and logical consistency by exact cover to a corpus
extracted from PubMed and a small manually extracted term set. These results
showed that my system was comparable in its performance to MeSH a thesaurus
specifically designed for the domain of this task. As MeSH is a resource that
took thousands of man-hours to compile it is impressive that my system could
produce a similar quality result in a much shorter time. These results were then
put into the exact cover finding system of section 4.2, and the results show that
this system was capable of improving the overall performance.

The rule based on system of section 3.2 was applied to two sets of data, one
was domain specific and the other was a more general resource. The first set I
extracted was all disease names from WordNet and I applied it to another cor-
pus of PubMed abstracts. These results show again that the system was capable
of extracting related term pairs with reasonable precision, however the nature
of the data as shown by the histogram plot, shows one of the key limitations for
the method: that most of the term pairs from WordNet occurred very few times
in the same contexts. I then performed a run on a general test set based of all
terms from WordNet that were hyponyms of “organism” and a corpus consist-
ing of 20,000 articles from Wikipedia, these results again had good precision.
I applied the logical consistency algorithm of section 4.3 to these results, both
separately for synonymy and hypernymy and using a logic that represents the
inter-dependencies between synonymy and hypernymy. The results showed that
by applying this method the precision of the result was improved, and although
the combined logic did not produce a significant improvement over the separate
logic.

In this paper I do not handle the problem of polysemy, that is of terms,
which refer to several different concepts. In general this method is intended to
extract terminology for a specialised domain and in that case terms are normally
specific to a single concept. However I accept that there is a need to include
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some sense disambiguation into the process and think this is a potential area
for future study. The pattern system I have developed is applicable to a more
complex rule types than my implementation has produced, for example as in the
discussion of section 3.2.3. I think there is room for more investigation into the
type of matching elements that would be useful for more complex patterns and
possibility of using patterns based on a parsed tree structure of the texts, which
I believe could be handled by the use of join-sets and alignments. The algorithm
I presented for finding consistent logical ontologies, I feel is very powerful, but
for very large networks (i.e., with n > 100, 000), I suspect this exact method
would not be tractable. The best approximation method I have presented is
likely not significantly faster and is not guaranteed to terminate. As such there
may be a need to develop a robust approximate algorithm if this methodology
needs to be applied to very large networks.

The algorithms presented here have are very flexible and potentially suitable
for many other tasks. The pattern extraction system I have presented can handle
very general types of rules, and it is possible to extend it to be an automatic rule
generator for a language such as SRL. As SRL is designed for extracting and
tagging a wide variety of facts from raw text, my algorithms should be capable
of handling extraction tasks than simply relations. The natural extension of this
work is to improve recall by finding pairs that do not occur in the same contexts,
and I feel that by using some form of reference resolution it should be possible
in the future to incorporate such a system. The task of forming the result into
a consistent ontology is stated in a general logical framework. The problem
can be essentially viewed as finding the most likely version of structured data
from noisy information about its particular components, and as such this it is
possible to conceive that there are many other tasks, where this approach may
prove useful.

In this paper I presented a system that is capable of extracting semantically
related terms from raw text by the use of rules. I performed this by using a
novel method that reduces the search space by eliminating rules, which are not
different based on the data in the corpus. This method also has the advantage
that it is applicable to rules using more complex matching elements. I then
considered the problem of adding these extracted relations to an ontology, and
I formulated this problem by defining the structure of an ontology as a set of
axioms. I showed that this method gives a NP-hard problem, which requires
novel algorithms to solve efficiently. I present a new algorithm based on the use
of integer programming, linear relaxation and resolution, which is capable of
solving this problem optimally in a very short amount of time. Finally I show
that not only does making the result logically consistent allow it to be added
to a structured ontology, but it can also improve the quality of the result of the
extraction system.
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