
LexInfo: A Declarative Model for the

Lexicon-Ontology Interface

P. Cimiano a,∗, P. Buitelaar b, J. McCrae a, M. Sintek c

aSemantic Computing Group, Cognitive Interaction Technology Center of
Excellence (CITEC), University of Bielefeld, Germany

bUnit for Natural Language Processing, Digital Enterprise Research Institute,
National University of Ireland, Galway

cKnowledge Management Dept. & Competence Center Semantic Web,
DFKI, Germany

Abstract

In this paper we motivate why it is crucial to associate linguistic information with
ontologies and why more expressive models, beyond the label systems implemented
in RDF, OWL and SKOS, are needed to capture the relation between natural lan-
guage constructs and ontological structures. We argue that in the light of tasks
such as ontology-based information extraction (i.e., ontology population) from text,
ontology learning from text, knowledge-based question answering and ontology ver-
balization, currently available models are not sufficient as they only allow us to
associate literals as labels to ontology elements. Using literals as labels, however,
does not allow us to capture additional linguistic structure or information which is
definitely needed as we argue. In this paper we thus present a model for linguis-
tic grounding of ontologies called LexInfo. LexInfo allows us to associate linguistic
information with respect to any level of linguistic description and expressivity to
elements in an ontology. LexInfo has been implemented as an OWL ontology and
is freely available together with an API. Our main contribution is the model itself,
but even more importantly a clear motivation why more elaborate models for as-
sociating linguistic information with ontologies are needed. We also further discuss
the implementation of the LexInfo API, different tools that support the creation of
LexInfo lexicons as well as some preliminary applications.

Key words: lexicon-ontology interface, lexicon ontologies, ontologies, natural
language processing

∗ Corresponding author. Tel: +49 (0) 521 106 12249
Email addresses: cimiano@cit-ec.uni-bielefeld.de (P. Cimiano),

paul.buitelaar@deri.org (P. Buitelaar), jmccrae@cit-ec.uni-bielefeld.de

Preprint submitted to Elsevier 21 October 2010

1 Introduction

Several standards for representing ontologies have been developed in the last
decade, in particular RDF Schema ([32,10]) and OWL ([6,36]). While ontolo-
gies are logical theories and independent of any natural language 1 , a ground-
ing in natural language is nevertheless needed for several reasons:

• When engineering an ontology, human developers will be able to better
understand and manipulate ontologies. Associating linguistic information to
ontologies (in the simplest form by labels) allows people to ground concepts
and relations defined in the ontology with their own linguistic and cognitive
system.
• In ontology population, automatic procedures for ontology-based informa-

tion extraction from text will be able to better link textual data to ontology
elements if they are associated with information about the way they are
typically realized linguistically.
• When querying an ontology in natural language (see [34] and [7]), we need

information about how the words/constructs used in the query map to
classes, instances and properties modeled in the ontology.
• When verbalizing an ontology, i.e., generating natural language text for

easier human consumption (as in [19], [9]), richer models capturing how
concepts and relations can be realized linguistically will be needed.

All the above mentioned scenarios would benefit from a principled approach
allowing enrichment of ontology elements with information about how they
are realized linguistically. However, the development of models that allow us
to associate linguistic information (part-of-speech, inflection, decomposition,
subcategorization frames, etc.) to ontology elements (concepts, relations, indi-
viduals, etc.) is not as advanced as the corresponding ontology representation
languages. While RDF(S) and OWL allow us to associate labels to ontology
elements, we argue that this is not enough for actual use of ontologies in con-
nection with human users and textual data as described above. SKOS [39]
merely introduces further typology of labels (preferred, alternative, hidden,
etc.) and does not go beyond RDF(S) as it only supports the representation
of atomic terms without a possibility for representing their linguistic (sub-)
structure. However, SKOS was not developed with the aim of associating lex-
ical and linguistic information to arbitrary (domain) ontologies, but with the

(J. McCrae), sintek@dfki.de (M. Sintek).
1 Some authors have argued that ontologies should be constructed following our
understanding of language [52,5]. Irrespective of the way in which ontologies are
constructed, they are certainly artifacts engineered for a computer in the first place
as outlined also in [41]. Therefore, a grounding in language is not needed by the
computer itself—it can not make reasonable use of such a grounding anyway!—but
by humans interacting with the ontological structures, the results of a query etc.

2

goal of producing a data-model (building on RDF(S) and OWL) to represent
classification schemas, such as thesauri etc. Thus, by definition SKOS does not
fulfill the need for a richer model allowing us to associate linguistic structure
to arbitrary domain ontologies (and it was not designed for this purpose).

In this paper we introduce a principled model allowing to associate linguistic
information to ontologies with respect to any level of linguistic description
and expressivity, i.e., the LexInfo model. The main characteristic of LexInfo is
that it allows us to represent the connection between an ontology and the way
we speak about the different ontology elements in a declarative way 2 , such
that the information is reusable across systems. The current situation in this
respect is that every system mentioned above, be it an ontology population,
ontology-based question answering or ontology verbalization system, needs to
establish a connection between language and the ontology repeatedly for each
ontology the system supports. This situation is clearly undesirable as it does
not allow a distribution of effort. A clear modularization of tasks (separating
the creation of lexicons from their usage in a particular system) as we envision
here would allow to distribute efforts in the sense that some parties could
create a lexicon for a specific ontology and make the lexicon publicly available
in a machine readable format. Other parties could customize their information
extraction system to the ontology in question by searching and downloading
an appropriate lexicon from the Web. To realize this vision, we need a sound,
principled and declarative model by which we can represent and share ontology
lexica. This is the goal we pursue with LexInfo.

LexInfo conceptually builds on three main components: the LingInfo [13,14]
and LexOnto [16] models as well as the Lexical Markup Framework (LMF)
[24]. LingInfo and LexOnto were developed independently from each other in
previous work, but with similar goals and motivations. The LingInfo model
provides a mechanism for modeling label-internal linguistic structure, i.e., lex-
ical inflection and morphological or syntactic decomposition of ontology la-
bels, interpreted as terms. The LexOnto model on the other hand enables the
representation of label-external linguistic structure, i.e., predicate-argument
structures that are projected by lexical heads of ontology labels and their
mapping to corresponding ontological structures. While the two models have
the same aim of providing more expressive lexicon models for ontologies, they
have focused on rather complementary aspects. The LexInfo model presented
in this article combines aspects of both (LingInfo and LexOnto) to yield a rich
lexicon model for associating linguistic information with the elements defined
in an ontology. The LexInfo model builds on the Lexical Markup Framework

2 What we mean by ‘declarative’ in this context is that the specification of lin-
guistic descriptions associated to ontology elements is independent of any specific
applications or systems.

3

(LMF) 3 (see [24,27]) as a core and extends it appropriately to accommodate
the essential aspects of the LingInfo and LexOnto models. From a more gen-
eral perspective, we hope that this can provide a basis for future discussion
on standardization of lexicon models for OWL ontologies.

The paper is structured as follows. In Sect. 2 we provide an extensive motiva-
tion for the work discussed here as well as a comparison with related work. In
Sect. 3, we discuss in detail the three building blocks of LexInfo: the LingInfo
and LexOnto models as well as the Lexical Markup Framework (LMF). In
Sect. 4 we present our merged LexInfo model that combines aspects of both
models, using LMF as a glue to bring these models together. Furthermore, in
Sect. 5 we present the first implementation of an API for the LexInfo model
and discuss both the tool support that is currently available to create ontology
lexicons according to the LexInfo model as well as preliminary results from
applying the LexInfo model. Finally, in Sect. 6 we draw some conclusions of
the work presented and discuss ideas for future work.

2 Motivations and Related Work

In the following, we argue firstly that labels such as specified by the RDFS
and OWL standards are not sufficient for the purpose of associating linguis-
tic information with ontologies. Secondly, we also argue that existing related
work on the association of linguistic information with ontologies still fails to
address the need for richer models to capture the lexicon-ontology interface.
In addition, we also formulate a number of requirements which should be ful-
filled by models for linguistic grounding of ontologies and discuss how far the
different proposals fulfill these.

2.1 Separation Between Lexical and Ontological Layer

RDF(S) and OWL allow us to represent what could be termed a verbal ‘anchor’
for concepts, properties, individuals, etc. by way of the rdfs:label property,
which is defined for Resource as domain and Literal as range. We could use
this to specify that the class River is typically expressed in natural language
with the word ‘river’:

<rdfs:Class about="#River">

<rdfs:label>river</rdfs:label>

</rdfs:Class>

3 The Lexical Markup Framework has been recently accepted as an ISO standard
under ISO-24613:2008.

4

To allow for multilingual representation, the rdfs:label property enables the
representation of labels with an indication of language, e.g., for English (as
above) and for German using language tags:

<rdfs:Class about="#River">

<rdfs:label xml:lang="en">river</rdfs:label>

<rdfs:label xml:lang="de">Fluss</rdfs:label>

</rdfs:Class>

If we additionally want to represent linguistic variants of ‘river’, e.g., the plural
‘rivers’, the RDF data model gives us only one choice, i.e., adding a further
independent label, i.e.

<rdfs:Class about="#River">

<rdfs:label xml:lang="en">river</rdfs:label>

<rdfs:label xml:lang="en">rivers</rdfs:label>

<rdfs:label xml:lang="de">Fluss</rdfs:label>

<rdfs:label xml:lang="de">Fl~A1
4
sse</rdfs:label>

</rdfs:Class>

Although RDF(S) thus supports the representation of variants across lan-
guages, the way this is done is very unsatisfactory for the following reasons:

• The model does not allow us to capture relations between different labels,
e.g., morphological relations such as the fact that ‘rivers’ is the plural of
‘river’. Certainly, we could ask ourselves if we want to represent such mor-
phological relations explicitly in an ontology, but this raises the question
why we should represent linguistic and morphological variants at all, as
these are not ontologically relevant but rather should be attached to a base
entry (e.g., the lemma) in a lexicon rather than included in the ontology
itself. This is exactly the approach we have realized in LexInfo where a sep-
arate ontology structured according to the LexInfo model is used to model
the linguistic information.
• When attempting to extend the ontology with such simple information as

to which syntactic category (part of speech) a label belongs to, we will fail
as the labeling system only allows literals to be attached without further
information. This is a serious limitation and could also be overcome by sep-
arating the lexical and ontological levels, having lexical entries in a lexicon
which point to the ontology.
• The RDF label system rules out the possibility that completely different

lexica for a given ontology co-exist. The RDF label system in particular
ties the labels very closely to the ontology elements. A modular approach
in which the ontology and the lexicon are separated would clearly allow us
to have different lexica for a given ontology.

5

Models such as SKOS that tie the conceptual and the lexical layer together
more tightly do not solve the above issues in any way. In fact, SKOS only
introduces additional typology for the labels, distinguishing between preferred,
alternative and hidden labels. Certainly, we could specify that “rivers” is a
hidden label for the class River, but this does not solve any of the above
mentioned problems.

The principled solution in our view is to separate the ontological and lexical
information into two different domains of discourse. First we would have the
ontology domain of discourse, talking about classes, properties, individuals,
etc., and then we would have the lexical domain of discourse talking about
lexical elements as “first-class citizens”. This allows us to add linguistic in-
formation with respect to any level of linguistic description and expressivity
required by applications to the lexical elements in the lexical layer. Hereby, the
lexical layer is clearly separated from the ontology domain of discourse except
for referencing its elements. A crucial question we address here is how the
lexicon layer can be structured as a principled model. LexInfo is our answer
to this question.

2.2 More Flexible Coupling Between Ontological and the Linguistic System

The label property for RDF(S) and OWL in essence specifies an n : m relation
in the sense that one class, property or individual, etc. can be associated to
many labels and on the other hand one label can be ambiguous and refer
to many ontology elements (class, property or individual). In essence, the
relation between ontology elements OE of an Ontology O and a set of labels
L is specified by the following two functions (specific to a given language S):

• fS : L→ 2OE (i.e., a label can denote different ontological entities)
• f−1

S : OE → 2L (i.e., a given ontological entity can be represented by various
labels)

The sets in the ranges of the above described functions, i.e., fs and its inverse
f−1
s , have what could be termed a disjunctive interpretation in the sense that

a label l can denote some member of fs(l) (but not a composition of these),
while the same holds for f−1

s , i.e., an ontological element e can be realized
lexically as any member of f−1

s (e). Thus, the labeling system in RDFS relies
on the fact that there is always a counterpart at the ontological level for each
label specified in the lexicon, without allowing a more complex correspondence
between a class or property on one side and a “syntagmatic” 4 composition of

4 Syntagmatic relations are between words in a sentence in sequence, whereas
“paradigmatic” relations are between words according to meaning, i.e., between
synonyms.

6

several labels on the other.

The reason a more complex correspondence is needed may be explained with
the following example. Let us consider a composite term like the German
‘Autobahnkreuz’ (highway interchange). We have the following possibilities to
associate this term with ontological elements:

• There might be a class HighwayInterchange to which ‘Autobahnkreuz’ can
directly refer to.
• There might be a composite class Interchange u ∃locatedAt.Highway to

which ‘Autobahnkreuz’ can point.
• There might be simply the general class Interchange, in which case we

want to specify that only the second part of the composite term ‘highway
interchange’, i.e., ‘interchange’ refers to the class Interchange.
• There might be both classes Highway and Interchange represented, in

which case we want to specify that the second part of the composite term
(‘kreuz’) refers to the class Interchange and the first part (‘Autobahn’) to
the class Highway.

It thus seems that we require a flexible system to associate terms to concepts
that is sensitive to the way concepts or properties have been modeled and
allowing us to assign them to the whole term or to individual parts of a term.
Further, we see it as a requirement that this model does not assume that the
linguistic and ontological levels are “fully synchronized”. 5 Thus, we do not
need to add a class just because we want to include the term in the lexicon nor
the other way round as in RDFS. It is in this sense that synchronization is not
required. For this we need appropriate means to represent the decomposition
of terms and to associate ontological entities to terms and their sub-structure.
Obviously, this is out of the scope of the RDFS label system, as it does not
allow modeling of any of the semantic implications of the morphosyntactic
structure of complex labels (i.e., composite terms). Clearly, an approach based
only on the use of rdfs:label does not allow the semantic implications of such
label-internal morphological (in the case of German) or syntactic (in the case
of English) structure to be modeled.

2.3 Capturing Syntactic Behaviour

When we speak, we certainly do not do so in telegraphic style using only
content words (or labels). Words have a clear syntactic behaviour which to a
great extent is determined by their syntactic category (verb, noun, adjective,

5 Hirst [30] even argues they cannot be synchronized as there are ontological dis-
tinctions that are never lexicalized and linguistic distinctions that are ontologically
irrelevant.

7

etc.) The way that sentences are composed crucially depends on the syntactic
behaviour of the different words that make up the sentence.

When analyzing language, interpreting it with respect to an ontology (e.g., in
information extraction or question answering) or generating language output
on the basis of the ontology, it is crucial to have access to information about
the linguistic behaviour of words. To illustrate this, let us look at the following
properties:

<rdf:Property about="#capital">

<rdfs:domain rdf:resource="#Country"/>

<rdfs:range rdf:resource="#City"/>

<rdfs:label xml:lang="en">capital</rdfs:label>

</rdf:Property>

<rdf:Property about="#flowThrough">

<rdfs:domain rdf:resource="#River"/>

<rdfs:range rdf:resource="#City"/>

<rdfs:label xml:lang="en">flow through</rdfs:label>

</rdf:Property>

<rdf:Property about="#locatedAt">

<rdfs:domain rdf:resource="#City"/>

<rdfs:range rdf:resource="#Highway"/>

<rdfs:label xml:lang="en">located at/rdfs:label>

</rdf:Property>

Although each property in these examples has been associated with meaningful
labels (‘capital’, ‘flow through’, ‘located at’) this is not sufficient for various
reasons:

• Lack of linguistic information about the part-of-speech of the lexical item
expressed by the label. Consider, e.g., the capital property and as-
sume we want to generate a natural language description for the triple
(Germany,capital,Berlin). To prevent a system from generating a sen-
tence like “Germany capitals Berlin.”, it needs to know that capital is a
noun and cannot be used as a verb. Capturing part-of-speech information
(defining if it expresses a noun, verb, etc.) for labels is thus essential.
• Lack of deeper linguistic knowledge on subcategorization frames 6 that con-

strain the linguistic constructions in which such labels may appear. Consider
the case that we want to generate a natural language description of the triple

6 A subcategorization frame of a word specifies the number and types of syntactic
arguments (subject, direct object, prepositional object, etc.) as well as their linguis-
tic structure (nominal phrase, prepositional phrase, relative clause, etc.) that the
word can possibly co-occur with in a sentence.

8

(Rhein,flowThrough,Karlsruhe). Here we need to know that flow is an
intransitive verb 7 that requires a prepositional phrase introduced by the
preposition ‘through’ in order to generate an appropriate sentence like “The
Rhein flows through Karlsruhe” (provided we also specified morphological
information about the verb ‘flow’, in particular that the 3rd person singular
is ‘flows’, see the discussion on inflection above).
• Lack of ways for capturing the variation in relation expression, as there

are many ways in which a certain relation or property can be expressed
in language. Consider, for example, the locatedAt relation, which can be
expressed by “The A8 passes by Karlsruhe”, “The A8 connects Karlsruhe”,
“The A8 goes through Karlsruhe”, etc. Although we would not necessarily
want to add ‘pass’, ‘connect’ and ‘go’ as labels to the locatedAt property,
we may want to express that all of the corresponding verbal forms are valid
ways of expressing the locatedAt property.
• Lack of ways for expressing how and in which order linguistic arguments

of a certain verb map to corresponding semantic arguments of a predicate
as modeled in the ontology. For example, given a transitive verb such as
connects, we may want to specify that its linguistic subject maps to the
range of the locatedAt property and its direct object to the domain, as in
[The A8: subject] connects [Karlsruhe: direct object], which would map to
the triple (Karlsruhe,locatedAt,A8).

We see also from our examples above that properties can be realized by various
constructions, e.g., verbal constructions (flow through), by way of relational
nouns (capital of), but also by way of participle constructions (located at). The
linguistic information necessary for analysis and generation purposes obviously
differs for the different syntactic categories. Capturing these differences and
modeling the relevant information by introducing appropriate classes is an
important issue for any model allowing us to associate linguistic information
to ontologies.

2.4 Requirements

Given the above explanations, it is clear that more expressive models than
those currently available are needed to associate linguistic information with
ontology elements, particularly with properties. In general, we derive from the
discussion above at least the following specific requirements on a richer model
for grounding linguistic information in ontologies:

(1) We require that the model fosters a clear separation and independence
between the ontological and linguistic levels. Separation is important to

7 Transitive verbs (e.g., ‘love’) require both a subject and a (direct) object, while
intransitive verbs do require only a subject but no direct object (e.g., ‘sleeps’).

9

allow different lexica for one ontology to co-exist, while independence is
important to ensure that the different levels (ontological and linguistic)
do not constrain nor restrict each other.

(2) We require a model that allows us to express (structural) information
about linguistic realization with respect to any level of linguistic de-
scription and expressivity required by applications. For this we clearly
need a separate domain of discourse where lexical entries are first-class
citizens and arbitrary complex information can be attached to them. This
includes part-of-speech, morphological information, etc.

(3) The model should be able to model the morphological or syntactic
decomposition of complex terms, allowing the semantics of the single
components to be specified with respect to ontological entities (classes,
properties, etc.)

(4) As lexical elements never appear in language in isolation but interact with
other words in a variety of ways (through syntagmatic relations), we need
to capture also their syntactic behaviour as well as how this syntac-
tic behaviour translates into ontological representations and structures
defined in the ontology.

(5) It should allow the meaning of linguistic constructions to be speci-
fied with respect to an arbitrary (domain) ontology.

Further, a lexicon model for ontologies should fulfill also the following general
requirements (compare [43]):

• support for multilinguality: allowing us to represent complex lexical
entries for multiple languages,
• accessibility: supporting the querying, updating and navigation of the

model,
• interoperability: building on standards that allow models to be shared.

Our standpoint here is that accessibility and interoperability will be ful-
filled by any model building on some standard representation language (RDFS,
OWL, UML, XML, etc.) having appropriate tool support. The requirement
for multilingual representation can be accommodated by most of the models
we discuss below, though it has not always been a focus. In the simplest case,
multilinguality can be taken into account by attaching language information
(e.g., by way of a language tag) to every lexical entry. LIR, a more elaborate
model for representing multilingual information has been presented in [40].

2.5 Related Approaches

In what follows we briefly discuss some related approaches and state whether
they fulfill the requirements we have defined. Table 1 summarizes this discus-

10

1) separation 2) struct. ling. 3) syntactic 4) morph. 5) arbitrary

and indep. information behaviour decomp. ontologies

RDF/OWL No No No No Yes

SKOS No No No No n.a.

LMF No Yes Yes Yes No

LIR Yes Yes No No Yes

LW ? No No No ?

Penman GUM Yes Yes Yes ? Yes

OntoWordNet No Yes No No No

LingInfo Yes Yes No Yes Yes

LexOnto Yes No Yes No Yes

LexInfo Yes Yes Yes Yes Yes

Table 1
Requirements 1–5 fulfilled by the different models

sion:

• SKOS: The Simple Knowledge Organisation System (SKOS) essentially de-
fines a formal data-model for informal concept schemas such as thesauri and
taxonomies by use of the RDFS and OWL vocabularies [38,39]. The main
focus of SKOS is on exploiting the RDFS and OWL data-models to model
the relations that are typically used in such resources but lack a formal in-
terpretation. For this purpose SKOS defines relations such as skos:broader
and skos:narrower on the basis of the syntax and formal semantics of the
RDFS and OWL vocabularies. Although the representation of (multilin-
gual) terms is a shared objective, the aims of SKOS differ compared to ours
as our aim is to design a model which allows us to associate linguistic infor-
mation to arbitrary ontologies, while SKOS mainly uses RDF and OWL (as
a data model) to represent classification schemas such as thesauri, technical
vocabularies, etc. In addition to RDFS and OWL, SKOS allows labels to
be modeled in different flavors, i.e., as a preferred label (prefLabel), as an
alternative label (altLabel) or as a hidden label—used to capture infor-
mation for text mining and not visible to the person inspecting the model
for example. SKOS also incorporates multilingual support by allowing lan-
guage tags to be assigned to the labels. In addition, it allows us to model
the taxonomic structure of the resource in question using narrower and
broader properties.

With respect to our criticism that plain labels without any further linguis-
tic structure are not enough, SKOS does not add anything beyond RDFS
and OWL. Clearly, SKOS fails on our requirements 2–5 as it was clearly
not designed to specify the meaning of linguistic constructions with respect
to an arbitrary ontology (req. 5). Neither does it aim for a clear separation
between the knowledge representation and the linguistic levels (thus failing
on req. 1).
• LMF: The Lexical Markup Framework (LMF) aims to provide a meta-model

11

as a standard framework for modeling and representing computational lex-
icons such as WordNet [21], the SIMPLE lexicon [33] and others, which is
similar to the aims of SKOS to provide a standardized framework for mod-
eling and representing thesauri. LMF clearly fulfills requirements 1–4, but
fails on requirement 5 as it does not attempt to establish any connection
with domain ontologies, but instead stops where the lexical semantics of
words stops.
• Linguistic Watermark: The Linguistic Watermark (LW) (see [42]) is an

“ontological and software framework for describing, referring and manag-
ing heterogeneous linguistic resources and for using their content to enrich
and document ontological objects”. In essence, the LW framework includes
a meta-model in order to describe linguistic resources “from simple syn-
onym dictionaries, to complex resources such as WordNet”. In this sense
it is quite similar to the LMF framework, striving for a uniform model for
representing linguistic resources with the goal of interoperability. An aspect
which clearly distinguishes the LW from the LMF is that the former clearly
aims at connecting/integrating the ontological information with the linguis-
tic one. This connection comes in two flavors: i) integration proper where
parts of the linguistic resources are directly “imported” into the ontology,
and ii) linking of concepts to so called SemanticIndexes (e.g., a WordNet
synset) with the aim of “documenting” the concept’s meaning. With respect
to our requirements, it seems that the Linguistic Watermark clearly fails on
requirements 2, 3 and 4. With respect to requirement 1, it is not clear in
how far the linguistic and the ontological level are really separated as the
LW Suite allow WordNet sub-trees to be imported into the ontology (thus
clearly mixing both levels). Further, it can be expected that the LW allows
arbitrary ontologies to be taken into account but as this is not completely
clear we refrain from filling these fields in Table 1.
• LIR: The Linguistic Information Repository (LIR) [43] is a model inspired

in the LMF model for associating lexical information to OWL ontologies.
The main goal of LIR is to provide a model allowing to enrich the ontol-
ogy with a lexico-cultural layer allowing to capture the language-specific
terminology used to refer to certain concepts in the ontology as well as
to capture variations for different languages. The LIR model has focused
on multilingual aspects as well as on capturing specific variants of terms
(such as abbreviations, short forms, acronyms, transliterations, etc.) which
are all modeled as subclasses of the property hasVariant. To account
for multilinguality, the classes LexicalEntry, Lexicalization, Sense,

Definition, Source and UsageContext are all associated to a certain
Language to model variants of expression across languages. It also allows
to document the meaning of certain concepts in different cultural settings.
LIR certainly fulfills requirements 1 and 5, but certainly not requirements
2, 3 and 4.
• The Penman Generalized Upper Model (GUM): aims at simplify-

ing the mapping between language and knowledge by introducing a level

12

of linguistically motivated knowledge organization (see [3]). The categories
modeled in the Penman Upper model are linguistically motivated in the
sense that they constrain the linguistic realizations of knowledge. It re-
lies on a classification-based paradigm in which the classes, relations, etc.,
which are relevant to a given domain are assumed to be classified with
respect to the linguistically motivated semantic categories of the Penman
upper model. The knowledge organization level of the Penman upper model
is thereby assumed to provide a domain-independent, reusable knowledge
organization that is valid across domains. According to the rationale of the
Penman project, domain experts should not be required to model linguistic
expressions, but only link their own models to a general level of knowledge
organization that is linguistically motivated but keeps the linguistic details
hidden. As described in [4], the Penman upper model contains about 200
categories. The main goal of the Penman model is to ease the generation of
text from knowledge models. While the Penman model seems to fulfill all
requirements 1–5 in principle, it remains however unclear how variants of
expression (relevant for analysis and generation) are specified in the Penman
model. This is a crucial aspect of the LexInfo model.
• OntoWordNet: OntoWordNet [?] is a project that attempts to take the

existing WordNet lexicon and make it into an ontology, by conforming it
with the upper level model DOLCE [25]. In particular this consists of sev-
eral tasks: identifying WordNet synsets as classes, individuals or relations;
aligning the top of the WordNet hierachy to DOLCE; consistency checking
and adding extra domain relations. This approach does not offer separa-
tion between the ontological and lexical layer and works only for a single
ontology.

3 Building Blocks

In the following, we discuss the three main building blocks of LexInfo: LingInfo,
LexOnto and the LMF.

3.1 LingInfo: Multilingual Terms and Morpho-Syntactic Information

3.1.1 Basic Idea

LingInfo [14,13] was developed as an ontology-based lexicon model that al-
lows an integrated but modular approach to the representation of (multilin-
gual) terminology for ontology classes in particular. LingInfo defines a lexicon
model where terms can be represented as objects that include lexical infor-
mation, morpho-syntactic decomposition and point to semantics as defined

13

by a (domain) ontology. Consider for instance the previously discussed ex-
ample ‘Autobahnkreuz’ (highway interchange). This term can be linguistically
decomposed into the following morphological stems ‘Autobahn’ (highway) and
‘Kreuz’ (interchange), each of which can be linked to lexical information and
semantics as expressed by a domain ontology class. Even more complex ex-
amples of this can be found for instance in medical terminology: ‘muscular
branch of lateral branch of dorsal branch of right third posterior intercostal
artery’.

This complex term corresponds to a complex nominal phrase and can be
linguistically decomposed into the following sub-phrases, where each (sub-)
phrase may in turn express an ontology class:

sub-phrase 1 muscular branch

sub-phrase 2 lateral branch

sub-phrase 3 dorsal branch

sub-phrase 4 right third posterior intercostal artery

The LingInfo model has been developed to represent this kind of morpho-
syntactic information on (multilingual) terms for ontology classes and prop-
erties. Among the requirements listed in Sect. 2 above, the LingInfo model
therefore clearly addresses requirements 1 and 2, as well as 4 and 5 as the
meaning of decomposed terms will be represented with respect to a domain
ontology, clearly separating linguistic knowledge on these terms. The LingInfo
approach in effect integrates a domain-specific multilingual wordnet into the
ontology, although importantly, the original WordNet model does not distin-
guish clearly between linguistic and semantic information whereas the LingInfo
model is exactly based on this distinction.

3.1.2 Design

LingInfo supports the representation of linguistic information that is needed
to handle the cases discussed above, which includes: language-ID (ISO-based
unique language identifier), part-of-speech (of the head of the term), morpho-
logical and syntactic decomposition, and statistical/grammatical context models
(linguistic context represented by N-grams, grammar rules, etc.). The Ling-
Info model supports the association of such information with ontology el-
ements by way of a meta-class (ClassWithLingInfo) and a meta-property
(PropertyWithLingInfo) which are instantiated by the class or property in
question. This allows to link these classes and properties to instances of the
class LingInfo which represents the linguistic features of the class or prop-
erty. Figure 1 shows an overview of the model with example domain ontology
classes and associated LingInfo instances. The domain ontology consists of
the class Highway with parts HighwayLane and HighwayInterchange, each of

14

which are instances of the meta-class ClassWithLingInfo with the property
lingInfo pointing s to the respective LingInfo objects.

 rdfs:Class

 ClassWithLingInfo

 lingInfo

 meta−classes

 Highway

 lingInfo

 HighwayInterchange

 lingInfo

 HighwayLane

 lingInfo

 LingInfo

 lang

 term

 autobahnkreuz

 lang = "de"

 term = "Autobahnkreuz"

 fahrbahn

 lang = "de"

 term = "Fahrbahn"
 instances

 classes

 autobahn

 lang = "de"

 term = "Autobahn"

 pos = "N"

 kreuz

 lang = "de"

 term = "Kreuz"

 pos = "N"

rdf:type

rdf:type

rdf:type

lingInfolingInfo

partOf partOf

semantics

morphoSyntacticDecomposition

Fig. 1. LingInfo model with example domain ontology classes and LingInfo instances
(simplified)

3.2 LexOnto: Representing Syntactic Behaviour

3.2.1 Basic Idea

As already discussed in previous sections, words do not appear in isolation
in natural language but enter into a variety of syntagmatic relations with
other words which constrain the sentences that can be constructed. When
developing richer models allowing linguistic information to be associated with
ontologies it is thus crucial to capture the syntactic behaviour of words and
the relation between this behaviour and the ontology. This is the goal for

15

Fig. 2. Main Elements of LexOnto

which the LexOnto model was designed. LexOnto focuses in particular on the
representation of the syntactic behaviour of nouns, verbs and adjectives and
also on capturing their meaning with respect to a domain-specific ontology.
More generally, as any lexicon, LexOnto clearly focuses on the representation
of open-class words following the rationale described by Graeme Hirst:

“The words that are of interest [in a lexicon] are usually open-class or con-
tent words, such as nouns, verbs and adjectives rather than closed-class or
grammatical function words, such as articles, pronouns, and prepositions,
whose behaviour is more tightly bound to the grammar of the language.” (see
[31]).

3.2.2 Design

At an abstract level, the design of the LexOnto Model is conceptually very
simple. The main class of the LexOnto model is the class LexicalElement,
which has the subclasses PredicativeLexicalElement (PLE) and WordForm

(see Fig. 2). WordForms correspond to nouns, verbs and adjectives as plain
words ignoring the predicate-argument structures they project. PLEs corre-
spond to predicate-argument structures for verbs, nouns as well as lexical en-
tries for adjectives (see Fig. 3). In order to simplify the representation of the
mapping between lexical structures (LexicalElements), there is one single re-
lation anchor between a LexicalElement and a Class (understood as a frame
representing the semantics of the LexicalElement). This allows the mapping
from lexical elements to ontological structures to be represented in a uniform
way for all types by pointing to a single class (the so called anchor class). For
instance, the pattern “X is capital of Y” lexicalizes a structure anchored at
the class Country (because this class is the domain of the hasCapital prop-
erty). While the Y maps to the domain of the property hasCapital in the
sense that it would fill the subject position of a corresponding triple, X maps
to the range of the hasCapital property in the sense that the X position
will represent the range of the hasCapital property. The verbs write and flow
(through) lexicalize a structure anchored at the classes Document and River,

16

Fig. 3. Predicative Lexical Elements in LexOnto (showing only data-type but no
object properties)

respectively (i.e., these are the domains of the properties they refer to, i.e.,
hasAuthor and flowsThrough).

PredicativeLexicalElements are in all cases linked to a WordForm, e.g.,
a verbal predicate-argument structure is linked to its head verb, a nominal
predicate-argument structure to its head noun etc. As the treatment of verbs,
nouns and adjectives in LexOnto has been basically projected to the LexInfo
model, we discuss the details in Sect. 4.

3.3 Lexical Markup Framework

The Lexical Markup Framework is a meta-model that provides a standard-
ized framework for the creation and use of computational lexicons, allowing
interoperability and reusability across applications and tasks [27]. As the lex-
icon for an ontology is a special type of computational lexicon, we build on
the LMF framework to describe lexica for ontologies. The LMF meta-model
is organized in a number of packages (depicted in Fig. 4). The core package
contains the basic elements of the model and their dependencies (depicted in
UML-style notation in Fig. 5).

The central entity in the LMF meta-model is the Lexical Resource, which
has an associated Global Information object capturing administrative de-
tails and information related to encoding. A Lexical Resource consists of
several language-specific Lexicons. A Lexicon then comprises of Lexical

Entries (i.e., words, multi-word entities such as terms and idioms, etc.) which
are realized in different Forms and can have different meanings or Senses.

Other packages which are of relevance to our work here are:

(1) morphology extension: provides a mechanism for describing the mor-
phological structure of lexical entries (extensionally, i.e. for specific ex-
amples without supporting the definition of general patterns or rules)

(2) NLP syntax extension: allows the syntactic behaviour and properties

17

ISO 24613:2008

EXAMPLE: In a Lexical Entry for abbess the narrative description may be woman who is in
charge of a convent.

5.2.10 Statement Class

Statement is a class representing a narrative description and refines or complements
Definition. A Definition instance can have zero to many Statement instances.

NOTE: A full example is given in WordNet context in annex H.

5.2.11 Text Representation Class

Text Representation is a class representing one textual content of Definition or Statement.
When there is more than one variant orthography, the Text Representation class contains a
Unicode string representing the textual content as well as the unique attribute-value pairs that
describe the specific language, script, and orthography.

EXAMPLE: In a Bambara lexicon, a given lexical entry may be associated with one definition
that is expressed in Bambara for native speakers and in French for French speakers that
learn Bambara. The Definition instance will thus have two Text Representation instances,
each with a specific narrative content and an attribute-value pair for the language information.

5.3 LMF extension use

All extensions conform to the LMF core package in the sense that each extension is anchored
in a subset of the core package classes. An extension cannot be used to represent lexical
data independently of the core package. Depending on the kind of linguistic data involved, an
extension can depend on another extension. From the point of view of UML, an extension is a
UML package. The dependencies of the various extensions are specified in Figure 2.

Figure 2 � Dependencies between the LMF core and extension packages

© ISO 2008 – All rights reserved 18

Fig. 4. Package structure of LMF taken from [27]

ISO 24613:2008

Form Representation

Text Representation

Global Information

Statement

Definition

Lexical Resource

Representation

Lexical Entry

Lexicon

Form

Sense

0..*
0..*

1

1..*

0..* 0..*

1..*

1..*

0..*

0..*

0..*

Figure 1 � LMF core package

5.2.1 Lexical Resource class

Lexical Resource is a class representing the entire resource. Lexical Resource occurs once
and only once. The Lexical Resource instance is a container for one or more lexicons.

5.2.2 Global Information class

Global Information is a class representing administrative information and other general
attributes. There is an aggregation relationship between the Lexical Resource class and the
Global Information class in that the latter describes the administrative information and general
attributes of the entire resource. The Global Information class does not allow subclasses.

Global Information instance must contain at least the following attribute:

� /language coding/ This attribute specifies which standard is used in order to code the
language names within the whole Lexical Resource instance.

Global Information instance may contain the following attributes:

© ISO 2008 – All rights reserved 16

Fig. 5. Core package model taken from [27]

18

of a lexical entry to be described, in particular the subcategorization
frame structure for predicative elements such as verbs etc.

(3) NLP semantics extension: provides a way to associate semantic repre-
sentation structures to syntactic structures, which clearly has a strong re-
lation with the syntax package, allowing semantic predicates to be defined
and their semantic arguments to be associated with syntactic arguments
of a subcategorization frame.

The other LMF packages are not that important for our current purposes as
they cover: i) the intensional definition of patterns for morphological opera-
tions (NLP Morphological Pattern extension), ii) the representation of data
stored in machine readable dictionaries (MRD extension), iii) the representa-
tion of sense and syntactic behaviour equivalents across languages (NLP mul-
tilingual notations extension), and iv) the description of the internal structure
of a multi-word entity (MWE) (NLP MWE Pattern extension). However, it
might be the case that these packages become relevant at a later stage of
LexInfo development. 8

At first sight, the LMF model serves our purposes of linguistically grounding
ontologies as it clearly distinguishes between the syntactic and semantic levels
of description (NLP Syntax vs. NLP Semantic packages). In our case, the NLP
Semantic package reflects classes, properties and other ontological structures
as described in a (domain) ontology with which we associate the computational
lexicon(s). As shown in Fig. 6 and 7 however, both levels are clearly interlinked
as described below.

In the syntactic extension, we can model i) the syntactic behaviour
(lmf:SyntacticBehaviour) of lexical entries in the form of subcategoriza-
tion frames (lmf:SubcategorizationFrame) and their corresponding syntac-
tic arguments (lmf:SyntacticArgument), such as subject, object etc. The
lmf:SynSemArgMap, which is located in the semantic extension package, is
the key entity allowing us to associate syntactic arguments to semantic
ones. From the semantic point of view, entities of type lmf:LexicalEntry,
lmf:SyntacticBehaviour, and lmf:PredicativeRepresentation are all
associated to a lmf:Sense which captures their (lexical) semantics. For
our purposes, the crucial entities are lmf:PredicativeRepresentation,
lmf:SemanticPredicate and lmf:SemanticArgument, which will be refined
in terms of specific subclasses which allow us to connect to predicates de-
fined in the ontology (e.g., classes and their properties). The essential class for
mapping syntactic to semantic arguments is the lmf:SynSemCorrespondence

8 In fact, at the time of writing we are working on integrating the NLP Morphologi-
cal Pattern extension into the LexInfo API in order to represent generative inflection
patterns and avoid representing inflectional variants for all lexical entries explicitly.
However, this part of the work is not completed. The LexInfo API is currently still
under development and a description of all features is out of the scope of this article.

19

ISO 24613:2008

Annex E (normative) NLP syntax extension

E.1 Objectives

The purpose of this annex is to describe the properties of a lexeme when combined with other
lexemes in a sentence. When recorded in a lexicon, the syntactic properties make up the
syntactic description of a Lexical Entry instance.

This annex permits the description of specific syntactic properties of lexemes and does not
express the general grammar of a language.

E.2 Class diagram

The NLP syntax extension is organized as described in the following Figure E.1.

Lexicon

Subcategorization Frame Set

Syntactic Argument

Subcategorization Frame

SynSemArgMap

Syntactic Behaviour

Lexeme Property

SynArgMap

Lexical Entry

Sense

Described in Semantic package

0..*

0..*

{ordered}

0..*

0..1

0..1

0..*1

0..*0..*

0..*

0..*

0..*

0..*

2

0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..*

0..*
0..*0..1

Figure E.1 � Syntactic model

© ISO 2008 – All rights reserved 32

Fig. 6. Structure of the NLP Syntax extension, taken from [27]

ISO 24613:2008

Annex G (normative) NLP semantics extension

G.1 Objectives

The purpose of this section is to describe one sense and its relationship with other senses
belonging to the same language. Due to the intricate interactions between syntax and
semantics in most languages, this section also provides the connection to syntax. The linkage
of senses belonging to different languages will be described using the multilingual notations
annex.

G.2 Class diagram

The NLP semantics extension is organized as described in the following figure G.1.

Lexicon

Semantic Predicate

Predicative Representation

SynSemCorrespondence

Sense

Subcategorization Frame

Monolingual External Ref

Semantic Argument

Definition

Syntactic Argument

Syntactic Behaviour

Argument Relation Predicate RelationSynSemArgMap

Synset Relation

Sense Example

Sense Relation

Synset

Lexical Entry

Statement

Described in syntactic annex

0..*

0..*
0..*

0..* 0..*

0..*

0..*

0..*0..*

0..*

0..*
0..*

0..*

1

0..*

0..*

0..*

0..*

0..*0..1

0..*

0..*
1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*
0..*

0..*

1

0..* 0..*

0..* 0..*
0..*

0..1

1..*

0..*

0..*

Figure G.1 � Semantic model

G.3 Connection with the core package

The Sense class is specified in the core package. The Sense class is aggregated in the
Lexical Entry class. Therefore, a Sense instance is not shared among two different Lexical
Entry instances.

© ISO 2008 – All rights reserved 38

Fig. 7. Structure of the NLP Semantics extension, taken from [27]

20

class, which consists of a number of SynSemArgMaps for mapping specific syn-
tactic arguments of a subcategorization frame to semantic arguments of a
lmf:SemanticPredicate. In the following section we will describe how the
LMF model has been extended to support the association of ontological struc-
tures to lexical entries and, conversely, of linguistic information to ontological
classes and properties.

4 LexInfo: Enriching Ontologies With Linguistic Information

The starting point for our unifying model for linguistically grounded ontologies
are the LingInfo, LexOnto and LMF models discussed in the previous sections
3.1, 3.2 and 3.3, respectively. The glue for the three frameworks will essentially
be provided by the LMF model. We proceeded as follows to arrive at our
unifying model:

• We downloaded the OWL version of the LMF model available at http:

//www.lexicalmarkupframework.org/.
• As the ontology has been originally created starting from an UML model

and only uses the properties isAssociated, isPartOf and isAdorned, we
have introduced appropriate subproperties for most of the associations be-
tween entities described in the LMF Specification [24]. Further, we have
commented most of the ontology classes on the basis of the descriptions of
the LMF Specification [27]. The resulting ontology is available for download
at http://lexinfo.net/lmf.
• Then, we created a new ontology LexInfo importing the corrected LMF

ontology, introducing our monotonic extensions on top of it. The LexInfo
ontology can be downloaded here: http://lexinfo.net/lexinfo.

In what follows we discuss how LexInfo meets our requirements 1–5.

4.1 Separation Between Linguistic and Ontological Levels

The separation between the ontological and linguistic levels is achieved in Lex-
Info by introducing two separate domains of discourse by way of using different
name spaces (and different ontologies). On the one hand we have the domain
ontology with its own namespace defining the relevant classes, properties and
individuals in the given domain. And on the other hand the lexical information
is factored into a separate domain of discourse, which is structured according
to the LexInfo model. The main entities in the lexical domain of discourse are
instances of the class LexicalEntry. Figure 8 shows the subclass hierarchy
of lexical elements. Figure 9 shows how a LexicalElement representing the

21

 LexicalEntry

 Noun Verb Adjective ProperNoun Phrase

 NounPhrase VerbPhrase ProperNounPhrase

 Preposition Adverb Conjunction Determinant

Fig. 8. Subclasses of LexicalEntry

 River_LE:Noun River:Class
hasSense

Fig. 9. The Lexical Entry for ‘river’ points to the class River through the hasSense
property. The lexical and ontological levels are clearly separated but linked to each
other.

Noun ‘river’ is linked to the class River defined in the ontology by pointing via
the hasSense 9 property to an individual of the OWL2 meta-ontology stand-
ing proxy for the class. The ontology elements are reified as by building on a
meta-mode of OWL [51] so that we can refer to them as individuals.

4.2 Linguistic expressivity

The separation between the linguistic and the ontological levels also enables
linguistic information to be attached to lexical elements for any level of re-
quired linguistic expressivity. In particular, LexInfo allows for a high degree
of linguistic expressivity by attaching part-of-speech and morphological infor-
mation to lexical entries. This is in contrast not possible in RDF(S), OWL
or SKOS, which restrict the range of the label property to Literal. Part-
of-speech information is attached to lexical entries by specifying the lexical
entry as an instance of classes such as verb, noun, adjective, etc. This is done
according to the subclass hierarchy of LexicalEntry (see Fig. 8).

Morphological information and relations between the different morphological
variants are captured by directly building on the structure provided by LMF.

9 A reviewer has pointed us to the fact that we are using the term Sense here in
an unorthodox fashion (from a lexical semantics point of view. However, let us note
that in standard sense-enumerating lexicons (the ones criticized by Pustejovsky in
his theory of the Generative Lexicon [?] the sense of a word is defined by pointing
to one ore more elements in the inventory of sense, as for instance in WordNet. We
are using sense in this line but assuming that sense inventory is provided by a given
domain ontology.

22

 River_LE:Noun

 River_Lemma:Lemma

 hasWrittenForm="river"

 Rivers:WordForm

 hasWrittenForm="rivers"

 River:WordForm

 hasWrittenFrom="river"

 Singular:SyntacticProperty

 synPropName="number"

 synPropValue="singular"

 Plural:SyntacticProperty

 synPropName="number"

 synPropValue="plural"
hasLemma

hasWordForm

hasWordForm

hasSyntacticProperty

hasSyntacticProperty

Fig. 10. Modeling ‘river’ and its morphological variations using the LMF machin-
ery. Here both the plural form and singular form are represented with appropriate
syntactic properties.

Figure 10 shows how information about morphological variants of a word
(here ‘river’) are modeled through WordForms. In the figure we see how the
fact that the plural of ‘river’ is ‘rivers’ is specified through an instance of
WordForm which has the syntactic property Plural and hasWrittenForm value
of ‘rivers’.

4.3 Morphological or Syntactic Decomposition of Composite Terms and
Multi-word Expressions

The morphological decomposition of terms is done in LexInfo by building on
the morphological extension package of LMF, which essentially allows us to
associate a ListOfComponents with a LexicalEntry, which has an ordered list
of components (with a minimum of 2) (see [27]). We have modeled this in OWL
by introducing an additional data-type property order specifying the absolute
order of a Component within a ListOfComponents. Components then point to
LexicalEntries which can again be composite, thus allowing for recursion. In
order to capture how the parts of a compound are associated to the ontology,
we build on the general mechanism of LMF allowing LexicalEntries to be
associated with a Sense, of which owl2:Entity is a subclass. 10 In this way, we
are able to state that ‘Autobahnkreuz’ is composed of two lexical entries where
the first refers to the class Highway and the second to the class Interchange
(see Fig. 11). In this sense the LexInfo model thus captures the relevant aspects
of the LingInfo model, allowing the morphological decomposition of terms to
be modeled and thus fulfilling requirement 4.

Multi-word expressions are modeled in a similar manner by way of the sub-
class Phrase of LexicalEntry indicating that the lexical entry is actually a

10 We build on the OWL2 meta-ontology for this purpose: http://owlodm.

ontoware.org/OWL2.

23

 Autobahnkreuz_LE:Term
 Autobahnkreuz_Lemma:Lemma

 writtenForm="Autobahnkreuz"

 Autobahnkreuz_LC:ListOfComponents

 Autobahnkreuz_C1:Component

 order="1"

 Autobahnkreuz_C2:Component

 order="2"

 Autobahn_LE:Noun Kreuz_LE:Noun

 Autobahn_Lemma:Lemma

 writtenForm="Autobahn" Highway:Class

 Kreuz_Lemma:Lemma

 writtenForm="Kreuz" Junction:Class

hasLemma

listOfComponents

hasComponenthasComponent

lexicalEntry lexicalEntry

hasLemma hasLemmahasSense hasSense

Fig. 11. Example of decomposition (‘Autobahnkreuz’) with linking to ontology con-
cepts (LexInfo extension). Here we see the lexical entry is decomposed into two
components, both of which are lexical entries with their own lemmas.

complex expression. Phrase has a number of subclasses, such as NounPhrase

or VerbPhrase, representing a phrase with the head being a noun or verb, re-
spectively. Each phrase is connected to a LexicalEntry representing the head
via the property head. Each component of the phrase is then modeled in the
same manner as for composite terms (see Fig. 12).

4.4 Syntactic Behavior

We have argued already that the representation of syntactic behavior is crucial
for any model linking linguistic information to ontology elements. For this
purpose, we have extended the LMF model by reusing its classes but refining
them in the LexInfo model, in particular introducing the following subclasses
of LMF classes:

24

 StructuralAlignmentReport:NounPhrase

 StructuralAlignmentReport_LC:ListOfComponents

 Structural:Adjective AlignmentReport:NounPhrase

 AlignmentReport:ListOfComponents

 StructuralAlignementReport_C1:Component

 order="1"

 StructuralAlignnmentReport_C2:Component

 order="2"

 AlignmentReport_C1:Component

 order="1"

 Alignment:Noun

 AlignmentReport_C2:Component

 order="2"

 Report:Noun

hasListOfComponents

hasComponent hasComponent

lexicalEntry lexicalEntry

hasListOfComponents

hasComponent

lexicalEntry

hasComponent

lexicalEntry

head

head

Fig. 12. Example of phrase decomposition of “structural alignment report”. Here
we see that a tree is created by first decomposing the lexical entry into “structural”
+ NP, and then the noun phrase is decomposed into “alignment” + NP and the
final noun phrase into “report.”

 SubcategorizationFrame

 NounPP Noun2PP Transitive IntransitivePP TransitivePP AdjectiveMod

Fig. 13. Subclasses of SubcategorizationFrame

 SyntacticArgument

 Subject Object PObject Mod

 SemanticArgument

 Domain Range

Fig. 14. Subclasses of SyntacticArgument and SemanticArgument

(1) Subclasses of lmf:LexicalEntry, i.e., lexinfo:Verb, lexinfo:Noun

etc., which are distinguished by way of attributes in the LMF model
(see Fig. 8).

25

 PredicativeRepresentation

 ClassPredicativeRepresentation PropertyPredicativeRepresentation

 LiteralPropertyPredicativeRepresentation ScalarPropertyPredicativeRepresentation

Fig. 15. Subclasses of PredicativeRepresentation

 SemanticPredicate

 ClassPredicate PropertyPredicate

Fig. 16. Subclasses of SemanticPredicate

(2) Subclasses of lmf:SubcategorizationFrame, i.e.,
lexinfo:Transitive, lexinfo:IntransitivePP, etc. (see Fig. 13).

(3) Subclasses of lmf:SyntacticArgument, i.e., lexinfo:Subject,

lexinfo:Object, lexinfo:PObject), etc. (see Fig. 14).
(4) Subclasses of the lmf:PredicativeRepresentation and

lmf:SemanticPredicate classes, e.g., the classes lexinfo:Class-

PredicativeRepresentation and lexinfo:ClassPredicate

as well as lexinfo:PropertyPredicativeRepresentation and
lexinfo:PropertyPredicate allowing us to refer to a class or property
(as predicate), respectively (see Fig. 15 and Fig. 16). In addition,
there are subclasses (ScalarPropertyPredicativeRepresentation and
LiteralPropertyPredicativeRepresentation) for representing the
behavior of the predicate if the range is valued (i.e., integer, string, etc.).

(5) Subclasses of the lmf:SemanticArgument class, i.e., lexinfo:Domain,
lexinfo:Range, etc., as well as appropriate subclasses allowing the se-
mantic arguments of a class to be specified (where properties are under-
stood as slots of the frame represented by the class) (see Fig. 14).

It is important to note that LMF also distinguishes between different types of
subcategorization frames. However, the distinction is encoded as an attribute,
i.e., ‘regularSVO’ for a transitive verb for instance. The advantage of modeling
the different subcategorization frames as subclasses (as we have done) is that
this allows us to formulate additional axioms, requiring for example that a

26

 LexicalEntry

 SyntacticBehaviour

 SubcategorizationFrame

 SynSemCorrespodence

 SynSemArgMap

 SyntacticArgument SemanticArgument SemanticPredicate

 PredicativeRepresentation

 Lemma

 hasWrittenForm: String

 WordForm

 hasWrittenForm: String

 SyntacticProperty

 synPropName: String

 synPropValue: String

hasLemma

hasSynSemArgMap

synArg semArg

hasSyntacticBehaviour

subcatFrame

predicate

hasSynSemCorrespondence

hasSyntacticArgument hasSemanticArgument

hasWordForm

hasSyntacticProperty

Fig. 17. General Schema of SynSemCorrespondence. In this diagram the syn-sem ar-
gument map is used to link the syntactic argument of the subcategorization with the
semantic argument of ontology predicate. The mechanisms on the left show the lex-
ical part of the lexicon with the entry, lemma, word forms and syntactic properties.
On the right side the semantic mapping includes the predicative representation and
the predicate. The SynSemCorrespondence has the function of gluing together all
the mappings from syntactic to semantic arguments for the given subcategorization
frame.

Transitive subcategorization frame has exactly two syntactic arguments: a
subject and an object. Such general axioms allowing the lexicons to be checked
for consistency are clearly not possible in the original LMF model.

There are a number of classes in the LexInfo model that stem from the
LMF model and allow us to represent syntactic structures together with
their mapping to ontological structures. The main classes defining the
syntactic behavior of lexical elements is SyntacticBehaviour (linked to
LexicalEntry through the property hasSyntacticBehaviour). Each instance
of SyntacticBehaviour is associated to an instance of Subcategorization
Frame (through the property subcatFrame which specifies the type of syn-
tactic structure (transitive verb, intransitive verb, etc.) as well as the syntac-
tic arguments it requires to be realized linguistically. This is accomplished
through the hasSyntacticArgument property linking to various instances
of the class SyntacticArgument representing the Subject, Object etc. of
the syntactic construction. At the semantic side, an analogous specifica-
tion of the predicate in question and its semantic arguments is assumed.
PredicativeRepresentation stands proxy for a class or property defined in
the ontology. This proxy relation is captured through the property predicate

which links a PredicativeRepresentation to a SemanticPredicate which
can be either a PropertyPredicate or a ClassPredicate pointing to the ap-
propriate instance of the OWL2 meta-ontology representing the corresponding
class or property.

27

 f low:Verb

 f low_lemma:Lemma

 hasWrittenForm="flow"

 flow_SB:SyntacticBehaviour

 flow_SF:IntransitivePP

 through:Preposit ion

 hasWrittenForm="through"

 synsem1:SynSemCorrespondence

 f low_subject:Subject

 f lowThrough:ObjectProperty

 f lowThrough_P:PropertyPredicate

 f lowThrough_PPR:PropertyPredicativeRepresentation

 f lowThrough_domain:Domain

 f lowThrough_range:Range flow_pobject:PObject

 map1:SynSemArgMap

 map2:SynSemArgMap

hasLemma

hasSyntacticBehaviour

subcatFrame

hasSynSemArgMap

hasSynSemArgMap

hasSyntacticArgument

hasSyntacticArgument

synArg

synArg semArg

property

predicate

semArg

hasSemanticArgument

hasSemanticArgument

preposition

Fig. 18. Modeling of the syntactic behavior of the LexicalEntry (Verb) ‘flow’
together with the mapping to the ontological predicate flowsThrough via the
SynSemCorrespondence class.

The crucial link between the syntactic and semantic levels is accomplished
through the class SynSemCorrespondence, which is related to one or more
SynSemArgMaps which establish the correspondence between a syntactic ar-
gument in the subcategorization frame (through the property synarg) and a
semantic argument of the PredicativeRepresentation (through semArg).

Figure 17 depicts all of the above schematically. We describe how this scheme is
instantiated for the different types of part of speech (verbs, nouns, adjectives)
in the subsections below.

4.5 Verbs

Verbs inherently express relations between their arguments and project dif-
ferent predicate-argument structures which we can not capture if we only
model verbs as plain strings (in the form of labels). In the LexInfo model we
thus explicitly represent verb argument structures (so called subcategorization
frames) and the way they map to corresponding (domain-specific) ontology

28

structures (especially properties). In particular, in the model we consider the
following verb classes (so far):

• transitive verbs (Transitive): these are those requiring a subject and a
direct object, e.g., ‘love’, ‘write’, etc.
• intransitive verbs subcategorizing a prepositional complement

(IntransitivePP): these are those requiring a subject and a prepositional
complement headed by a specific preposition, e.g., ‘flow through’, ‘pass by’
etc.
• transitive verbs subcategorizing a prepositional complement

(TransitivePP): those requiring a subject, an object and a prepositional
complement, e.g., ‘write an article about sth.’.

The hierarchy for verbal (and nominal) subcategorization frames is shown
in Fig. 13. We illustrate the interplay between the different classes on the
basis of the example of the subcategorization frame for the verb ‘flows’
which requires a subject (i.e., that what flows) as well as a prepositional
object introduced by the preposition ‘through’. Obviously, it is possible
that a verb projects different subcategorization frames and syntactic behav-
iors. Figure 18 shows how the link between the syntactic behavior of the
verb flows (through) and the ontology is modeled. First of all we have a
LexicalEntry (a Verb more specifically) representing the verb itself. The
verb has a base form or lemma ‘flow’. Further, the lexical entry for ‘flow’
is related to an instance of SyntacticBehaviour representing one of its
possible syntactic realizations. The instance of SyntacticBehaviour is then
linked to an instance of type SubcategorizationFrame (an IntransitivePP

in this particular case). The modeling makes explicit that this subcatego-
rization frame requires two syntactic arguments: a Subject and a PObject.
At the semantic/ontological level we introduce an instance of the class
PredicativeRepresentation which will stand proxy for the object prop-
erty flowsThrough with a River as Domain and a Location as Range. The
instance of PropertyPredicativeRepresentation is linked to an instance
of PropertyPredicate (through the property predicate), which in turn
points to an object property defined in the domain ontology via the property
property. The PropertyPredicativeRepresentation has two arguments:
the Domain and the Range of the property. The link between syntax and seman-
tics is achieved via an instance of the SynSemCorrespondence class which is re-
lated to two SynSemArgMaps via the hasSynSemArgMap property. One instance
of SynSemArgMap links the subject of the subcategorization frame to the do-
main of the property flowsThrough, while another instance of SynSemArgMap
links the object syntactic argument to the range of the predicative represen-
tation of flowsThrough.

In principle, there is no limit to the classes considered and the model can be
extended to cover new types at any time. However, so far we have limited

29

the model to the most frequently occurring ones. The model will be certainly
extended in the future in line with needs of future applications. Further, we
intend to hook up the model to existing linguistic categories and resources as
our goal is not to reproduce work on standardization of linguistic categories
conducted in the computational linguistics community in particular under the
auspices of ISO 11 .

4.6 Nouns

Nouns have been noted in general to correspond to ontology classes, but noun
phrases can have an internal structure and subcategorize one (or more) prepo-
sitional phrases: e.g., the mother of, the capital of, the flight from A to B, the
distance between X and Y, etc. Thus, nouns subcategorizing for a preposi-
tional complement are modeled in LexInfo by associating it to a corresponding
subcategorization frame. Such relational nouns thus represent a relation or a
property rather than a single class. We have shown in Fig. 9 how simple nouns
representing a class are represented in LexInfo. In this section we discuss in
detail how relational nouns which actually represent a property are modeled.
Relational nouns are modeled in LexInfo by way of nominal subcategorization
frames that require a prepositional object as well as an external subject over
which the property is predicated. For example in the case of the syntactic
construction ‘X is the capital of Y’, the head of the prepositional object, i.e.,
Y , represents the domain of the property capital, while the X is realized
here as the subject of a copula construct 12 and represents the range of the
property capital.

4.7 Adjectives

Adjectives subcategorize syntactically the noun they modify and semantically
the entity which the property expressed by the adjective is predicated over.
Each adjective is assumed to have the subcategorization frame AdjectiveMod

indicating that it modifies another lexical entry and the modified syntactic
argument is denoted by the argument type Mod. We model the semantics of
adjectives relative to properties, normally by defining a set of permissible
object values for the adjective, i.e., we may say that ‘big’ can be applied to all
cities with more than 100,000 inhabitants. We then split the semantic behavior
into different forms by having subclasses of PredicativeRepresentation and

11 These works are called in a data category register called ISOcat and available at
http://www.isocat.org/
12 In linguistics, a copula is a word used to link the subject of a sentence with a
predicate, e.g., John is nice.

30

 Green:Adjective

 hasColor:Sense Green_SB:SyntacticBehaviour

 Green_SP:PropertyPredicate Green_PR:LiteralPropertyPredicativeRepresentation

 green:Sense

hasSyntacticBehaviour

predicativeRepresentation

predicate

property

hasSense

In the range of

Fig. 19. Modeling the adjective ‘green’ and its relation to the ontology. Here we see
that the literal predicate matches to a value green which is an instance of the range
of the property hasGreen, represented here as pseudo-property “in the range of”.

SemanticPredicate. In particular we define the following specific types of
adjectives:

• literal adjective: This is used when the adjective models the value of
an object property. The standard example are colors, for example if there
was a property hasColor with a range defined as the class Color, with
green as an instance of this class, then we would model ‘green’ as cor-
responding to this individual when used in the given relation. We model
this as a LiteralPropertyPredicativeRepresentation and a semantic
predicate PropertyPredicate, and we associate the LexicalEntry for
‘green’ with the individual green using the hasSense property and the
PropertyPredicate with the property hasColor using the property prop-
erty. This modeling is shown in Fig. 19. We have to admit that alternative
formalisations of the semantics of colour adjectives are possible, but this
is not important here. In fact, LexInfo is agnostic with respect to which
semantic theory and modelling to adopt, as long as the corresponding pred-
icates are defined in the corresponding ontology. The important point that
we want to stress is that LexInfo has been designed in such a way that dif-
ferent formalisations of the semantic of adjectives can be represented. The
specific choice of semantic representation is certainly left to the designers
of the ontology and/or lexicon.
• class adjective: A class adjective is associated to a class in

the ontology. This is modeled by way of the predicate represen-
tation ClassPredicativeRepresentation and the semantic predicate
ClassPredicate. An example here is the adjective “female” which ex-
presses the membership in the class Female. In essence class adjectives are
equivalent to literal predicates, but the class membership predicate (e.g.,
rdf:type) is used in place of an object property. As such we can say that

31

the semantics of ‘female dog’ is that it is a Dog that is also in the class
Female.
• scalar adjective: A scalar adjective models a data-type property, whose

range is totally ordered. Ideally if we have a data-type property like size

then we would like to define ‘large’ relative to it as subset of the property
range, i.e., a city is large if it has size in the set {x : x ≥ 100, 000}. As with
literal adjectives we have PropertyPredicate that refers to the data-type
property and we have a ScalarPropertyPredicativeRepresentation. For
open domain subsets, e.g., x ≥ 100, 000, we add two properties to the
ScalarPropertyPredicativeRepresentation, namely dataValue indicat-
ing the minimum or maximum value of this range, and polarity indicating
if this value is the minimum or maximum. This means that we also have
a natural modeling of comparative and superlatives as if the polarity is
positive this mean ‘larger’ indicates an increases in the data-type prop-
erty value. We also allow an optional contextSense to be defined, which
states that this particular adjective only holds if the subject of the data-type
property belongs to a given class. In the example above it is clear that the
data-type property size may apply to several domains, but that the range
corresponding to ‘large dogs’ is not the same as the range corresponding
to ‘large buildings’.

4.8 Specification of Meaning w.r.t. Ontology

The requirement of allowing the meaning of linguistic constructs to be specified
(terms, compounds, subcategorization frames) trivially follows from the way
we have conceived the LexInfo model (see particularly Sect. 4.3 for how the
semantics of terms and compounds are specified with respect to a domain
ontology and Sect. 4.4 for how the ontological meaning of subcategorization
frames is represented).

4.9 Multilinguality

The LexInfo model allows us to associate linguistic information in various lan-
guages to ontology elements. This support for multilinguality is a byproduct
of the decision to build on the LMF as a basis for our model. The assump-
tion in LMF is that lexicons are language-specific artifacts, such that there is
one different lexicon for every language supported. While this is a reasonable
assumption, other alternatives are possible. For example, we could assign a
language tag to every single lexicon entry, having just one lexicon per ontol-
ogy. By building on the LMF machinery we have however opted for having
one lexicon per language, which does not constitute a restriction in any way.

32

 lex_german:Lexicon

 language="de"

 lex_english:Lexicon

 language="de"

 fliessen_Verb:Verb

 flow_verb:Verb

 flowThrough:ObjectProperty
 flowThrough_PP:PropertyPredicate

 fliessen_Lemma:Lemma

 writtenForm="fliessen"

 flow_Lemma

 writtenForm="flow"

 flowThrough_PPR
 : PropertyPredicat iveRepresentat ion

 fliessen_SB:SyntacticBehaviour

 flow_SB:SyntacticBehaviour

 fliessen_SSM:SynSemCorrespondence

 flow_SSM:SynSemCorrespondence

 fliessen_SF:IntransitivePP

 flow_SF:IntransitivePP

hasLexicalEntry

hasLexicalEntry

hasLemma

hasSyntacticBehaviour

subcatFrame

hasSyntacticBehaviour

hasLemma

predicate
property

subcatFrame

synSemCorrespondence

synSemCorrespondence

hasSense

hasSense

Fig. 20. Modeling multilinguality. On the top we have a lexical entry for the German
verb “fliessen” in a German lexicon and on the bottom a lexical entry for the English
verb “flow” in an English lexicon. The connection between the two entries is realized
by sharing the same ontology sense and the same property predicate representation
and semantic predicate.

Following the LexInfo model, the linguistic information for different languages
(Lexical Entries, Subcategorization Frames, Syntactic Behavior etc.) is linked
to certain ontology elements which are language independent. In this way,
while the different variants for expressing a certain class or property are not
directly related, they are linked via the ontology (see Fig. 20). The figure
shows how realizations in different languages (“flows through” in English and
“fliesst durch” in German) are linked via SynSemCorrespondence objects
to the same PropertyPredicativeRepresentation object representing the
flowsThrough object property. The fact that there is no direct link is rea-
sonable as the exact relation between different linguistic realizations might
be unclear (they will not always be translation equivalents), while they might
certainly express the same meaning with respect to the vocabulary of the
ontology.

33

4.10 Formalization as an Ontology

While the LingInfo model was originally implemented in the RDF(S) language
[14], LexOnto was already created using OWL-DL. The version of LexInfo
described in this paper 13 has been implemented in OWL-DL. In this section
we discuss the different possible choices for implementing LexInfo, together
with their advantages and disadvantages:

• RDF(S): In RDF(S), Classes are themselves resources, so that we can
attach linguistic information to classes by treating them as individuals.
This is exactly the way that linguistic information was attached to classes
and properties in the LingInfo model (by introducing the meta-classes
ClassWithLingFeat that has other classes as instances, allowing the lin-
guistic information to be attached). This modeling allows combined reason-
ing over the lexicon and the ontology, but is limited in expressivity as it is
restricted to the expressiveness of RDFS.
• OWL-DL (with ontology meta-model): While it is forbidden to use the

same URI to refer to an an individual and a class in OWL-DL, this can
be done if we keep the lexical and ontological layers separate, thus not
allowing reasoning over both ontologies together. This is exactly the way
that linguistic information has been modeled in the LexOnto model and in
the LexInfo model, building on an appropriate OWL meta-model to talk
about properties and concepts in the lexicon ontology.
• OWL 2: in OWL2, a technique known as punning allows us to use the same

URI to refer to an individual and a class. This is possible by treating the
URIs logically as different symbols, clearly distinguishing between the indi-
vidual and the class (see [18]). OWL2 thus allows combined reasoning over
lexica and domain ontologies, overcoming the above mentioned limitations
of OWL-DL while clearly going beyond the expressive power of RDF(S).
• OWL Full: As OWL Full is the only ‘dialect’ of OWL which subsumes

RDF(S), it allows the same URI to be used to represent an individual and
a class and is the most expressive ontology language available. While it
therefore provides the necessary expressiveness to represent lexica and their
association to ontology elements, the disadvantage is that it is undecidable
and thus not relevant for practical implementations.

5 Tools and Applications

In this section we describe the tool support that is so far available to cre-
ate, maintain and serialize LexInfo lexicons. We discuss on the one hand the

13 available here: http://lexinfo.net/lexinfo

34

design of the LexInfo API but also discuss a plug-in for the NeOn toolkit 14

that supports the semi-automatic development of LexInfo lexicons. Further,
we also present our observations from initial experiments in which several
people had the task of creating LexInfo lexica. Finally, we briefly discuss the
application of LexInfo in ontology-based question answering systems as well as
in search applications which operate across languages, discussing in particular
the CLOVA architecture.

5.1 The LexInfo API

5.1.1 Interfaces and Aggregates

The LexInfo Application Programming Interface (API) has been designed to
be closely aligned with the LexInfo ontology, such that there are Java classes
— interfaces and implementations (with appropriate methods) — for all the
classes defined in the ontology.

One important design choice of the LexInfo API is to have three different
representation levels: i) interfaces, ii) implementations and iii) so called aggre-
gates.

For example, in order to represent subcategorization frames for transitive
verbs, there is one interface (Transitive.java) corresponding to the class
Transitive in the LexInfo ontology, an implementation thereof (Transi-
tiveImpl.java) as well as a so called aggregate (TransitiveAggregate.java). Ag-
gregates are introduced to facilitate the usage, querying and manipulation of
lexicon entries and provide all relevant information for each lexical entry in
one spot, accessible through appropriate methods. In this sense aggregates
encapsulate from the user all individuals necessary to represent a particular
lexical entry and make the manipulation of lexical entries easier by hiding all
the modeling details. The current version of the API includes the following
aggregates:

• NounAggregate: representing a single noun mapping to a class or individual
in the ontology
• NounPhraseAggregate: as above, but representing a complex noun phrase
• ProperNounAggregate, ProperNounPhraseAggregate: representing named

entities which are interpreted as individuals or classes with respect to the
ontology
• VerbAggregate, VerbPhraseAggregate: representing a verb or verb phrase
• ClassAdjectiveAggregate, ScalarAdjectiveAggregate,
LiteralAdjectiveAggregate: representing an adjective of the corre-

14 http://neon-toolkit.org

35

sponding type
• NounPPAggregate, NounPhrase NounPPAggregate: representing a noun

which subcategorizes a prepositional object and is thus interpreted as a
property with respect to the ontology
• TransitiveAggregate, VerbPhrase TransitiveAggregate,
IntransitivePPAggregate, VerbPhrase IntransitivePPAggregate:
a verb subcategorizing a corresponding number and type of arguments

Each of these aggregates are implemented as a class in the LexInfo API with a
number of methods that make it easier to access the individuals that constitute
this element. For Example NounPPAggregate has methods such as getNoun(),
getPreposition, getNounPP() (the subcategorization frame), getSubject()
(the syntactic argument), getRange() (the semantic argument) etc. There is
also a special aggregate called LexiconAggregate which includes all aggre-
gates which are associated with a single Lexicon individual in the lexicon
(and hence all aggregates of a specific language).

5.1.2 Default Generation of Lexicons using LILAC

In order to enable the quick adaptation of domain ontologies to LexInfo lexi-
cons we provide a method which can be used to automatically generate a lexi-
con from an existing ontology. This works by using either the rdfs:label an-
notation, the fragment of the URI in the domain ontology or if that is not avail-
able the local name of the URI. We then apply a simple tokenization procedure
(e.g., for http://www.mygrid.org.uk/ontology#has identifier we extract
“has identifier” and for http://dbpedia.org/resource/Shibuya%2C Tokyo

we extract “Shibuya, Tokyo”). Once we have the label in text form we apply
a POS tagger to obtain part-of-speech information for each token.

We developed a rule language called LILAC (LexInfo Label Analysis and Con-
struction) to process the labels. The LILAC rules essentially define a phrase
structure grammar which is used to parse labels (after they have been tok-
enized). Phrase structures for labels are then used to construct corresponding
aggregates. The following LILAC rules for example states that if a label con-
sists of a noun followed by a preposition (e.g., capitalOf), it will give raise
to a NounPP aggregate in the lexicon:

NounPP : <noun> <preposition>

When the above rule matches (e.g., on the label capitalOf), it creates a
NounPPAggregate as well as the appropriate lexical entries and uses the
setNoun(...) and setPreposition(...) methods of the aggregate. How-
ever, this is not sufficient as it does not capture the mapping between the
syntactic and semantic arguments. The LILAC rules also support the explicit
specification of this mapping:

36

The following rule matches on labels consisting of a verb. The rule creates a
TransitiveAggregate and assumes that the subject of the verb is interpreted
as the domain and the object as the range.

Transitive : <verb> { subject -> domain, object -> range }

The above rule would for example match the label ‘produce’.

The mapping can also be reversed, for example in the case that we have a
label such as ‘isProducedBy’:

Transitive : "is" <verb> "by" { subject -> range,

object -> domain }

The above rule would also create a TransitiveAggregate with reversed map-
pings.

These annotations allow LILAC to map the syntactic and semantic arguments
correctly. The second rule above can be refined by adding an annotation to
match the word form:

Transitive : "is" <verb> [verbform="participle"] "by"

{ subject -> range, object -> domain }

The above cases have assumed that the values of the aggregates (the head
etc.) are always filled by words contained in the label. However, LILAC is
not restricted to this case, allowing to include further words when generat-
ing the aggregate. The following LILAC rule which matches a label such as
‘hasAddress’ illustrates this:

NounPP : "has" <noun> { subject -> range,

pObject -> domain, preposition -> of }

The above constructs an aggregate of type NounPP for the head noun <noun>
subcategorizing a prepositional object introduced by the preposition “of”. This
will allow us to interpret constructions such as “The address of X is Y” in
terms of the property in question.

We allow for the construction of phrase expressions by allowing rules to match
recursively, for example “structural alignment report” can generate a noun
phrase as in Fig. 12 with the following rules

NounPhrase: <noun> <NounPhrase>

NounPhrase: <noun> <noun>

Overall, LILAC rules build on the observation of several authors (see [23], [29]
and [37]) that labels in ontologies typically show some regularities.

37

We created the LILAC rules using a small test ontology we developed from
common ontology labels and then further refined it by developing extra rules
based on the SWRC ontology [49]. We then tested the rules on two further
ontologies: the MyGrid ontology [48] and the WINE ontology (a W3C exam-
ple ontology). We then developed a set of approximately 100 rules to create
aggregates corresponding to the different types supported by the LexInfo API.
These rules can be applied to generate a default LexInfo model for any on-
tology. Table 2 shows results for these three ontologies. Two different taggers
were used before applying the LILAC rules to the labels: the Stanford POS
Tagger [50] and TreeTagger [47]. Table 2 indicates the number of aggregates
per type created for each ontology and part-of-speech tagger. In the last row
(Total) the table indicates the percentage of labels for which at least one ag-
gregate was created. These first results are certainly encouraging and show
that we can indeed create lexica automatically for any ontology by processing
the labels according to the LILAC rules. While there could be some overfitting
here to the three ontologies considered we are quite confident after inspection
that the rules obtained bear a reasonable degree of generality. 15

5.2 Manually Creating and Editing LexInfo Lexicons

While the creation of Lexinfo lexica can be automated as described in the
previous section, we can not expect that automatically generated lexica are
sufficient for real applications. First of all, the analysis and aggregates created
will not always be correct. Second, so far, we do not get any alternatives for
expressing classes, properties, etc. LILAC rules stay actually very close to the
label and are thus not able to capture linguistic variants.

In order to allow people to create new lexica or interact with already existing
lexica (either created automatically or by other people), we have implemented
a plug-in for the Neon toolkit 16 which allows people to select an ontology
element (individual, class or property), see the existing lexical entries for it or
create a new lexical entry by selecting an appropriate type and introducing
basic information. Figure 21 shows a screen-shot of the plug-in. We see that
the user has selected the concept mountain from the Geobase ontology. The
part of the plug-in labeled with “1” shows the empty list of lexical entries
that have been already modeled and associated to the concept mountain. The
action buttons in part “2” of the main interface allow the user to i) delete
existing entries, ii) save the current entry, iii) create a new entry, iv) save the
whole lexicon and v) open an existing lexicon. The third part of the main
interface shows the current lexicon entry the user is creating / editing. It

15 Software for generating lexica is available at http://www.lexinfo.net/
16 http://neon-toolkit.org/wiki/Main_Page

38

Stanford TreeTagger

MyGrid SWRC Wine MyGrid SWRC Wine

Noun 45 38 50 20 37 39

NounPhrase 386 31 173 345 27 138

ProperNoun 0 0 0 27 14 9

ProperNounPhrase 0 0 2 0 1 25

Verb 15 0 1 14 0 0

ClassAdjective 2 1 0 2 2 0

ScalarAdjective 0 2 0 0 3 0

Adverb 0 0 2 0 0 0

Transitive 3 7 1 3 5 0

VP Transitive 0 1 0 0 1 1

IntransitivePP 1 7 4 1 6 4

VP IntransitivePP 0 2 0 0 1 0

NounPP 4 60 5 4 58 5

NP NounPP 0 14 4 0 14 4

Not Recognized 26 3 11 53 10 28

Total 94.6% 98.8% 95.7% 89.0% 93.9% 88.9%

Table 2
Results of Lexicon Generation using LILAC

shows that the user is currently creating a scalar adjective “high” associated
to the height property of the class mountain. He has further specified that
a mountain with a height greater than 750m counts as “high” and that the
adjective is positively correlated with the scale represented by height. The
plug-in is available at http://code.google.com/p/lexiconmapper/.

We report on the results of a small experiment in which different test subjects
created LexInfo lexicons for the Geobase ontology 17 . In our experiment, we
let five test persons model a LexInfo lexicon for the Geobase ontology using
the NeOn Toolkit plug-in. All of these test subjects were computer scientists.
Only two of them had knowledge about ontologies and only one person had
knowledge about natural language processing. The session with each of these
subjects lasted for 40 minutes. In the first 10 minutes they received instruc-
tions on the LexInfo model and the different lexical entry types supported.

17 Available at http://www.cimiano.org/philipp/home/Data/Orakel/geobase.

owl

39

Fig. 21. Screen-shot of the NeOn toolkit plug-in

They received some written guidelines for this. They also received some basic
instructions about how to use the NeOn Toolkit plug-in. In the remaining 30
minutes, the test subjects had to fulfill two tasks: creating their own lexicon
from scratch as well as modifying an automatically created default lexicon.

None of the test subjects had any problems understanding the NeOn toolkit
plug-in nor the LexInfo model and they created lexica containing between
21 and 32 lexical entries (manual mode) and 30 and 44 lexical entries (semi-
automatic mode). Figure 22 shows the average number of lexical entries cre-
ated for each type of lexical entry. We describe how such lexica can be used
in question answering systems below.

5.3 Using LexInfo Lexicons

In the following we describe some applications were the LexInfo model has
been deployed successfully. We briefly describe how LexInfo can be used in
ontology-based question answering systems as well as in applications support-
ing cross-language access to semantic data.

40

Übersicht
Aggregate

Autolexikon

Transitiv
Intransitive
+PP
Noun+PP
Class
Adjective
Literal
Adjective
Scalar
Adjective
Insgesamt

Transitiv
Intransitive
+PP
Noun+PP
Class
Adjective
Literal
Adjective
Scalar
Adjective

Transitiv
Intransitive
+PP
Noun+PP
Class
Adjective
Literal
Adjective
Scalar
Adjective

T1
T2
T3
T4
T5

Durchschnitt der
Lexika ohne
Hilfen
Durchschnitt
Lexika mit hilfe
des Default
Lexicons
Default Lexicon

Lexika ohne HilfeDefaultLex UnterstützungAutolex T1a T1b T2a T2b T3a T3b T4a T4b T5a T5b Autolexikon
4,2 10 10 2 8 2 11 2 9 7 12 8 10 10
8,2 10,4 9 4 15 10 10 6 6 13 12 8 9 9

10,4 16,8 22 13 16 12 16 10 12 8 20 9 20 22
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,6 4,2 0 2 9 2 9 3 3 4 0 2 0 0

25,4 41,4 41 21 30 21 48 32 44 27 39 26 46 41

komplett manuellkomplett manuell
4,2
8,2

10,4
0

0

2,6

DefaultLex UnterstützungDefaultLex Unterstützung
10
10,4

16,8
0

0

4,2

Günter
Stephan
Andi
Martin
Sandro

Anzahl Aggregate
25,4 16

41,4 0,254 162,99212598425

41

0

3,75

7,5

11,25

15

Transitiv Intransitive+PP Noun+PP Class Adjective Literal Adjective Scalar Adjective

Modellierte Satzarten bei der Modellierung ohne Hilfen

A
nz

ah
l

Satzarten

Lexika ohne Hilfe

0

5

10

15

20

Transitiv Intransitive+PP Noun+PP Class Adjective Literal Adjective Scalar Adjective

Übersicht Subkategorisierungsrahmenarten bei manueller Modellierung auf Grundlage eines vorberechneten Lexikons

D
ur

ch
sc

hn
itt

lic
he

 A
nz

ah
l

Subkategorisierungsrahmenarten

0

12,5

25

37,5

50

Durchschnitt der Lexika ohne Hilfen Durchschnitt Lexika mit hilfe des Default Lexicons Default Lexicon

Übersicht Anzahl modellierter Sätze

A
nz

ah
l

Lexikon Art
Anzahl modellierte Sätze

0

7,5

15

22,5

30

Transitiv Intransitive+PP Noun+PP Class Adjective Literal Adjective Scalar Adjective

Übersicht Verteilung der modellierten Subkategorisierungsrahmenarten

A
nz

ah
l

Subkategorisierungsrahmenarten
Durchschnitt komplett manuelle Lexikonmodellierung
Durchschnitt manuelle Lexikonmodellierung auf Grundlage eines vorberechneten Lexikons mit Default Lexicon Unterstützung
Unverändertes vorberechnetes Lexikon

0

3,75

7,5

11,25

15

Transitiv Intransitive+PP Noun+PP Class Adjective Literal Adjective Scalar Adjective

Übersicht Subkategorisierungsrahmenarten bei komplett manueller Modellierung

D
ur

ch
sc

hn
itt

lic
he

 A
nz

ah
l

Subkategorisierungsrahmenarten

0

7,5

15

22,5

30

Transitive Intransitive+PP Noun+PP Class Adjective Literal Adjective Scalar Adjective

Overview of the modelled subcategorization frames

N
um

b
er

Subcategorization frames
manually created lexicon semi-automatically generated lexicon automatically created lexicon

Fig. 22. Average number of modeled lexical entries

S

DP

DET

the

NP

N

address

PP

P

of

DP↓

PObject

VP

V

is

DP↓

Subject

Fig. 23. LTAG tree for the intransitive PP aggregate “address of”

5.3.1 LexInfo for Question Answering

LexInfo can be used to partially generate lexicalized grammars – in particular
Lexicalized Tree Adjoining Grammars (LTAG) – for question answering sys-
tems. We have implemented a generator that automatically generates LTAG
elementary trees from the lexical entries in the LexInfo lexicon (cf. [?]). These
elementary trees constitute a domain-specific lexicon, which can be used for
parsing and semantic interpretation of questions with respect to an underlying
ontology. For example, an elementary tree generated for the label addressOf
is given in Fig. 23. In this tree, PObject and Subject refer to the seman-
tic arguments corresponding to the subcategorization frame in the lexicon.
In Fig. 24, we see that by using the syn-sem argument maps we are capable
of linking this instance to a datatype property, and state that the Subject

corresponds to the domain of the property and PObject to the range of the
property.

41

DP

S

VP

DET NP
the

N PP
address

P DP
of PObject

V DP
is Subject

Bob hasAddress “23 West St”

SynSemArgMap

Fig. 24. Using LexInfo to select substitution into elementary trees

We applied this approach to an OWL version of Mooney’s Geobase dataset. 18

The LexInfo model constructed for this ontology contains 762 lexical entries.
692 of them correspond to common nouns representing individuals, which are
constructed automatically. The remaining 70 entries were built by hand, using
the API that LexInfo provides. If we assume a reasonable effort of 2 minutes
for building one such entry, the amount of work needed for lexicalizing the
ontology amounts to a bit more than 2 hours. Then we used the generator
to automatically generate 2785 grammar entries (LTAG trees together with a
semantic representation) from those LexInfo entries. In addition, we manually
specified 149 grammar entries for domain-independent elements such as deter-
miners, wh-words, auxiliary verbs, and so on. Applied to a gold standard set
of 859 questions and corresponding database queries, our system achieves a
recall of 67% with 82% precision [?]. The main source of discrepancies between
our system’s output and the gold standard are due to the context-dependence
of lexical elements and to a still required fine-tuning of the mechanism that
translates semantic representations into queries.

5.3.2 LexInfo for Cross-Language Knowledge Retrieval

Data models and knowledge representation formalisms in the Semantic Web
allow us to represent data independently of any natural language. In order
to facilitate the interaction of human users with semantic data, supporting
language-based interfaces seems crucial. As human users speak different lan-
guages, it is important to allow for the quick development of applications that

18 http://userweb.cs.utexas.edu/users/ml/geo.html

42

allow to access semantic data in multiple languages. However, currently there
is no principled approach supporting the access of semantic data across multi-
ple languages. To fill this gap, we have designed an architecture called CLOVA
(Cross-Lingual Ontology Visualization Architecture) designed for querying a
semantic repository in multiple languages. A developer of a CLOVA applica-
tion can define the search interface independently of any natural language by
referring to ontological relations and classes within a semantic form specifica-
tion (SFS) which is a declarative and conceptual representation of the search
interface with respect to the ontology in a proprietary XML format. The search
interface can then be automatically localized by the use of a lexicon ontology
model such as LexInfo [12] which enables the system to automatically generate
the form in the appropriate language. The queries to the semantic repository
are generated on the basis of the information provided in the SFS and the
results of the query can be localized using the same method as used for the
localization of the search interface. The CLOVA framework is generic in the
sense that it can be quickly customized to new scenarios, new ontologies and
search forms. Additional languages can be added without changing the actual
application, even at runtime if we desire.

CLOVA is a modular, reusable and extensible architecture implemented in
Java which is fully configurable and easy to adapt to different data sources,
user interfaces and localization tools. Figure 25 depicts the general architecture
of CLOVA and its main modules. The form displayer is a module which trans-
lates the semantic form specification into a displayable format, e.g. HTML.
Queries are executed by the query manager and the results are displayed to
the user using the output displayer module. All of the modules use the lexi-
calizer module to convert the conceptual descriptions (i.e., URIs) to and from
natural language. Each of these modules are implemented independently and
can be exchanged or modified without affecting the other parts of the system.
In what follows we briefly describe the main components of the system:

Semantic Form Specification: One of the most important aspects of
CLOVA is the form specification, which consists of a list of fields which can be
queried. Each field is associated to the URI of a property in the data source,
an internal name, a usage property to determine if it can be included in the
output and a so called “property range”. The property range defines seman-
tically what values the property should take. Each property range is defined
not by the data type of the range (e.g., integer) but by the set of queriable
values it has. For example we may use an integer range to describe a property
such as “year founded” but for a property for which it is not practical to be
queried through a single value, e.g., “population”, we specify the range as a
ranged integer and for a property queried as a fixed set of brackets, e.g., “age”
we specify it as a segmented integer. It is important to include these semantic
distinctions in order to choose the right UI elements for the user to search
the data source and to formulate the query correctly. CLOVA includes a num-

43

JSP Engine

Servlets

Servlets Container (Tomcat)

Query
Manager

Fo
rm

Sp
ec

ifi
ca

tio
n

SP
AR

Q
L

SQ
L

KB
 S

pe
ci
fic

Q
ue

ry Knowledge
Base

Output
Displayer

Lexicalizer

Domain OWL LexInfo

QUERY

RESULTS

HTTP

HTM
L

Fo
rm

QUERY FORM

HTTP

Output
Elements

Form
Displayer

Form
Elements

O
ut

pu
t

Sp
ec

ifi
ca

tio
n

Fig. 25. CLOVA General Architecture

ber of property ranges and supports mechanisms for defining new property
ranges and including them in the SFS. This document is in principle similar
to the concept of a “lens” in the Fresnel display vocabulary [8], although our
formalisms support additional information that is crucial when automatically
generating a search interface given a conceptual specification of the relevant
properties in the semantic form specification.

Query Manager: Once the form is presented to the user, he or she can fill
the fields and select which properties he or she wishes to visualize in the re-
sults. When the query form is sent to the Query Manager, it is translated into
a specific query for a particular knowledge base. We have provided modules
to support the use of SQL queries using JDBC and SPARQL queries using
Sesame [11]. We created an abstract query interface which can be used to
specify the information required in a manner that is easy to convert to the ap-
propriate query language allowing us to change the knowledge base, ontology
and backend without major problems. The query also needs to be processed
using the lexicalizer, due to the presence of language dependent terms intro-
duced by the user which need to be converted to language-independent URIs.

Output Displayer: Once the query is evaluated, the results are processed
by the output displayer to determine a proper visualization. The displayer has
a display element for each different kind of output to represent, i.e., tables,
bar charts, etc., which can be tested in order to see if it can display the data.
The output displayer uses the lexicalizer to display the appropriate natural
language labels in the same manner as the form displayer.

Lexicalizer: In order to lexicalize ontology URIs in different languages,
CLOVA builds on the LexInfo Model and uses its API. In particular, CLOVA
builds on the LILAC rule language in order to generate valid textual forms
on the basis of the linguistic information contained in LexInfo. In fact, while

44

we have not mentioned this explicitly so far, LILAC can be also applied in
reverse mode to generate lexicalizations for ontology elements (classes, prop-
erties, etc.) The lexicalization proceeds as follows: for each concept that needs
to be lexicalized, the API is consulted to find the entry that has a sense with
the same URI as the concept. Then appropriate LILAC rules to lexicalize the
corresponding aggregate are selected. As this process requires only the URI
of the concept, by changing the LexInfo model and providing a reusable set
of LILAC rules, the language of the interface can be changed to any suitable
form. This allows to move flexibly between languages as one has to add only
a LexInfo lexicon for a given language without any further modification of the
system.

Besides being used in the lexicalization of property URIs in different languages,
LexInfo can also be used to resolve textual form queries into appropriate URIs
that can be used to query the backend. For example if the user queried for
“food” then the LexInfo model could be queried for all lexical entries that have
either a lemma or word form matching this literal. The corresponding URIs
referred to by this word can be used to query the knowledge base. This means
that a user can query in their own language and expect the same results, for
example the same concept for “food processing” will be returned by an English
user querying “food” and a German user querying for “Lebensmittel” (part of
the compound noun “Lebensmittelverarbeitung”).

We have realized the CLOVA architecture as a web application using HTML
and JSP by implementing modules to translate the form specification into
HTML. This involves creating a form display element for each property range
containing the appropriate HTML code, and the form displayer, which orga-
nizes these into a single HTML form. Each of these elements depends on the
lexicalizer which converts the ontology URIs to natural language. This form
can then be incorporated into a JSP page and the layout and formatting of
the pages can be easily changed by providing CSS stylesheets.

To demonstrate CLOVA we created a web portal for accessing information
about companies. 19 We used a dataset that was a subset of the infobox data
extracted from Wikipedia using the Strict Infobox Ontology for DBPedia 3.4
[1], reduced to the information relevant for companies. We have chosen this
type of data because it is structured and measure units are normalized, which
allows for more sophisticated querying. Also for most of the URIs there is
a translation of the term provided in DBPedia, extracted from links between
different language versions of Wikipedia, so we can quickly extract multilingual
lexica. We used the LexInfo API to develop lexica for English, Spanish and
German and created a form using several of the properties commonly used in
the ontology.

19 http://www.sc.cit-ec.uni-bielefeld.de/clova/demo

45

The bottom line is thus that LexInfo is providing a principled and declarative
model that is used in the lexicalizer component of the CLOVA architecture to
lexicalize ontology elements (properties in particular) in such a way that all
the necessary information for accomplishing this is contained in the language-
specific LexInfo models only. Thus, we can easily extend the languages covered
by an application by adding an additional LexInfo ontology for the correspond-
ing language without modification of the application code itself. This would
even allow us to add new languages at runtime if necessary. LexInfo is thus
contributing to defining a clear interface between an application supporting
cross-language access to information and the linguistic information needed
for this purpose. This leads to very modular architectures where lexica can
be developed independently of an application and even shared without any
implications for the application code using these models.

6 Conclusions and Future Work

The interface between language and knowledge as captured by ontologies is
much richer and more complex than can be expressed by current ontology
models, such as the labeling system of RDFS, OWL, and SKOS. Enhanced
models that couple linguistic information with ontological structure are cer-
tainly required for tasks such as ontology learning and population from text,
natural language generation from ontologies, etc. While there is no doubt that
ad-hoc models for representing linguistic information might be suitable for in-
dividual systems and solutions to these problems, we have proposed a sound
and principled model that is independent of any specific application (this is
what we mean by ‘declarative’) and can be exchanged across systems. For
this purpose we have clearly spelled out the requirements for such models and
argued that many related proposals fall short of fulfilling these.

LexInfo fulfills the requirements stated and clearly details how the mapping
from language to ontologies might work. In order to design LexInfo, we have
built on two previously developed complementary models (LingInfo and Lex-
Onto). In our current proposal we used the LMF meta-model to glue together
the crucial ingredients of these models. LMF represents a solid and principled
framework for representing computational lexica, of which we regard onto-
logical lexicons as a special case. The LingInfo, LexOnto, LexInfo and LMF
ontologies are available from the project website, 20 as well as a corresponding
Java API with implementations for OWL API.

We have further shown how LexInfo can be applied in at least two appli-
cations with different needs. Concerning question answering applications, we

20 http://www.lexinfo.net

46

have argued that LexInfo has the required expressivity to generate lexicalized
grammars from it. LexInfo has also clear applications in cross-language seman-
tic search applications. There LexInfo can be used to lexicalize both interfaces
and query results to the language of choice of a user. The lexical information
is captured in the LexInfo model only and can thus be exchanged in a modular
fashion, allowing to include LexInfo lexica created by others and thus creating
clear interfaces for the ontology-language interface. Finally, small experiments
have been conducted to verify that users can indeed understand the model
and are able to create LexInfo lexicons if appropriate GUIs are available.

In future work we intend to further develop the LexInfo API, extending it
with more aggregate types as required by other applications. We are currently
working on an extension of LexInfo to incorporate (generative) patterns that
allow to generate morphological and inflectional variants such as the plural
instead of storing them explicitly. Our mid-term goal is also to improve our
default lexicon generation mechanisms by including information from linguis-
tic resources (WordNet, CELEX, 21 COMLEX 22) etc. as well as corpora such
as Wikipedia that can give us information about frequency of usage of the ag-
gregates in a lexicon. In this line we intend to develop a corpus-based approach
which uses statistical measures defined on the corpus to assess the relevance
and appropriateness of a certain entry for the domain in question. It is also
our goal to extend our automatic lexicon creation methods to multiple lan-
guages. This will require the development of techniques for translating labels
much as done in LabelTranslator [20]. It would also be interesting to investi-
gate the relation between LexInfo and Linked Open Data. 23 LexInfo provides
a formalism that can also be used to publish lexical information about data
resources which could become itself part of the Web of data. People could
thus create and publish their lexica much as they publish ontologies or data
on the Web. This is a fascinating issue to explore which might allow us to add
a “lexicon layer” crossing language boundaries to the Web of data, thus bring-
ing it closer to the idea of a truly Multilingual Semantic Web. 24 Primarily
however, we also hope to have provided a solid basis for any future discus-
sion on standardization of lexicon models for OWL ontologies. At the time of
preparing the final version of this manuscript, there is a new lexicon (meta-)
model developed by some of the authors in the context of the Monnet project
which brings together the LexInfo and the LIR models. In designing this new
model – Lemon (Lexicon Model for Ontologies – we have attempted to provide
a very minimal core vocabulary that can be extended with further modules as
required by a specific application. In addition, lemon is linguistically agnos-

21 http://catalog.elra.info/product_info.php?products_id=439
22 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=

LDC98L21
23 http://linkeddata.org/
24 http://msw.deri.ie

47

tic in the sense that it does not prescribe the usage of any specific linguistic
categories. Instead, the model offers flexibility by enabling the definition of
instantiations of lemon through the selection of specific data categories from
a registry such as ISOcat[?].

Acknowledgements: This work is supported in part by the Science Foun-
dation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) as well as by the
European Union under Grant No. 248458 for the Monnet project. 25 and by
the German Research Foundation (DFG) under the Multipla project (grant
38457858). We thank all those that have contributed in the last years to the de-
velopment of LexInfo and its API, including (in alphabetical order): Hammad
Afzal, Matthias Mantel, Thomas Wangler, and Tobias Wunner. Our thanks
go also to Christina Unger for providing the examples related to grammar
generation and to Peter Haase for his contributions to the design of LexInfo
and its precursor LexOnto.

References

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia:
A nucleus for a web of open data. Lecture Notes in Computer Science, 4825:722,
2007.

[2] C.F. Baker, C.J. Filmore, and J.B. Lowe. The berkeley framenet project.
In Proceedings of the International Conference on Computational Linguistics,
1998.

[3] J. Bateman, R. Kasper, J. Moore, and R. Whitney. A general organization of
knowledge for natural language processing: The penman upper model. Tech.
Report. Information Sciences Institute, Marina del Rey, California, 1989.

[4] J.A. Bateman. Upper modeling: A general organization of knowledge for
natural language processing. In Proceedings of the Workshop on Standards
for Knowledge Representation Systems, 1990.

[5] J.A. Bateman. On the relationship between ontology construction and natural
language: a socio-semiotic view. International Journal of Human Computer
Studies, 43(5-6):929–944, 1995.

[6] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinees, P.F.
Patel-Schneider, and L.A. Stein. OWL Web Ontology Language Reference,
2004.

25 http://www.monnet-project.eu/

48

[7] A. Bernstein and E. Kaufmann. Gino - a guided input natural language ontology
editor. In Proceedings of the International Semantic Web Conference (ISWC),
pages 144–157, 2006.

[8] C. Bizer, R. Lee, and E. Pietriga. Fresnel: A browser-independent presentation
vocabulary for rdf. In Proceedings of the Second International Workshop on
Interaction Design and the Semantic Web, Galway, Ireland. Citeseer, 2005.

[9] K. Bontcheva and B. Davis. Semantic Knowledge Management: Integrating
Ontology Management, Knowledge Discovery and Human Language Technology,
chapter Natural Language Generation from Ontologies, pages 117–130.
Springer, 2009.

[10] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, 2002.

[11] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. Lecture Notes in
Computer Science, pages 54–68, 2002.

[12] P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek. Towards linguistically
grounded ontologies. In Proceedings of the European Semantic Web Conference
(ESWC), pages 111–125, 2009.

[13] P. Buitelaar, T. Declerck, A. Frank, S. Racioppa, M. Kiesel, M. Sintek, R. Engel,
M. Romanelli, D. Sonntag, B. Loos, V. Micelli, R. Porzel, and P. Cimiano.
Linginfo: Design and applications of a model for the integration of linguistic
information in ontologies. In Proceedings of OntoLex06, a Workshop at LREC,
2006.

[14] P. Buitelaar, M. Sintek, and M. Kiesel. A lexicon model for
multilingual/multimedia ontologies. In Proceedings of the 3rd European
Semantic Web Conference (ESWC06), 2006.

[15] P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and R. Studer. Towards portable
natural language interfaces to knowledge bases - the case of the orakel system.
Data Knowledge Engineering, 65(2):325–354, 2008.

[16] P. Cimiano, P. Haase, M. Herold, M. Mantel, and P. Buitelaar. Lexonto:
A model for ontology lexicons for ontology-based NLP. In Proc. of the
OntoLex (From Text to Knowledge: The Lexicon/Ontology Interface) workshop
at ISWC07 (International Semantic Web Conference), 2007.

[17] P. Cimiano and M. Minock. Natural language interfaces: What is the problem?
- a data-driven quantitative analysis. In Proceedings of the 14th International
Conference on Applications of Natural Language to Information Systems, 2009.

[18] B. Cuenca-Grau, I. Horrocks, B. Mortik, B. Parsia, P. Patel-Schneider, and
U. Sattler. Owl2: The next step for owl. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 2008. in press.

49

[19] B. Davis, A. Ali Iqbak, A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, and
S. Handschuh. Rountrip ontology authoring. In Proceedings of the International
Semantic Web Conference, pages 50–65, 2008.

[20] M. Espinoza, A. Gomez-Perez, and E. Montiel-Ponsoda. Multilingual and
localization support for ontologies. In Proceedings of the European Semantic
Web Conference (ESWC), pages 821 – 825, 2009.

[21] C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

[22] C. Fillmore. Linguistics in the Morning Calm, chapter Frame semantics, pages
111–137. Hanshin Publishing, 1982.

[23] G. Fliedl, C. Kop, and J. Vöhringer. From OWL class and property labels
to human understandable natural language. In Proceedings of the 12th
International Conference on Applications of Natural Language to Information
Systems (NLDB), volume 4592 of Lecture Notes in Computer Science, pages
156–167. Springer, 2007.

[24] G. Francopoulo, N. Bel, M. Georg, N. Calzolari, M. Monachini, M. Pet, and
C. Soria. Lexical markup framework: ISO standard for semantic information
in NLP lexicons. In Proceedings of the Workshop of the GLDV Working Group
on Lexicography at the Biennial Spring Conference of the GLDV, 2007.

[25] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WordNet
with DOLCE. AI Magazine, 24(3):13–24, 2003.

[26] A. Gangemi, R. Navigli, and P. Velardi. The ontowordnet project: Extension
and axiomatisation of conceptual relations in wordnet. In Proceedings of
the International Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE 2003), 2003.

[27] The LMF Working Group. Language resource management – lexical markup
framework (LMF). Technical Report ISO/TC 37/SC 4 N453 (N330 Rev.16),
ISO, 2008.

[28] S. Hartrumpf, H. Helbig, and R. Osswald. The semantically based computer
lexicon HaGenLex – structure and technological environment. Traitement
automatique des langues, 44(2):81–105, 2003.

[29] D. Hewlett, A. Kalyanpur, V. Kovlovski, and C. Halaschek-Wiener. Effective
natural language paraphrasing of ontologies on the semantic web. In Proceedings
of the Workshop on End User Semantic Web Interaction, collocated with the
International Semantic Web Conference (ISWC), 2005.

[30] G. Hirst. Handbook on Ontologies, chapter Ontology and the Lexicon, pages
209–229. Springer, 2004.

[31] G. Hirst. Ontologies and the lexicon. In Steffen Staab and Rudi Studer, editors,
Handbook on Ontologies, International Handbooks on Information Systems,
pages 209–229. Springer, 2004.

50

[32] O. Lassila and R. Swick. Resource description framework (RDF) model and
syntax specification. Technical report, W3C, 1999.

[33] A. Lenci, N. Bell, F. Busa, N. Calzolari, E. Gola, M. Monachini, A. Ogonowsky,
I. Peters, W. Peters, N. Ruimy, M. Villegas, and A. Zampolli. SIMPLE: A
general framework for the development of multilignual lexicons. International
Journal of Lexicography, 13(4):249–263, 2000.

[34] V. Lopez and E. Motta. Ontology-driven question answering in aqualog.
In Proceedings of the International Conference on Applications of Natural
Language to Information Systems (NLDB), pages 89–102, 2004.

[35] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology
library (final). WonderWeb deliverable D18, 2003.

[36] D.L. McGuiness and F. van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, February 2004.

[37] C. Mellish and X. Sun. The semantic web as a linguistic resource: Opportunities
for natural language generation. Knowl.-Based Systems, 19(5):298–303, 2006.

[38] A. Miles and S. Bechofer. Skos simple knowledge organization system reference.
W3c working draft, World Wide Web Consortium, 2008.

[39] A. Miles, B. Matthews, D. Beckett, D. Brickley, M. Wilson, and N. Rogers. Skos:
A language to describe simple knowledge structures for the web. In Proceedings
of the XTech Conference, 2005.

[40] E. Montiel-Ponsoda, W. Peters, G. Auguado de Cea, M. Espinoza, A. Gómez
Pérez, and M. Sini. Multilingual and localization support for ontologies.
Technical report, D2.4.2 Neon Project Deliverable, 2008.

[41] S. Nirenburg and V. Raskin. Ontological Semantics. MIT Press, 2004.

[42] A. Oltramari and A. Stellato. Enriching ontologies with linguistic content:
An evaluation framework. In Proceedings of OntoLex 2008 (Hosted by Sixth
international conference on Language Resources and Evaluation, 2008.

[43] W. Peters, E. Montiel-Ponsoda, G. Aguado de Cea, and A. Gómez-Pérez.
Localizing ontologies in OWL. In Proceedings of the ISWC OntoLex’07
Workshop, 2007.

[44] C. Pollard and I.A. Sag. Head-Driven Phrase Structure Grammar. University
of Chicago Press, 1994.

[45] J. Scheffczyk, C.F. Baker, and Srini Narayanan. Ontology-based reasoning
about lexical resources. In Ontology and Lexical Resources in Natural Language
Processing, 2006. to appear, earlier version presented at OntoLex 2006.

[46] J. Scheffczyk, A. Pease, and M. Ellsworth. Linking framenet to the suggested
upper merged ontology. In Proceedings of the International Conference on
Formal Ontology in Information Systems, 2006.

51

[47] H. Schmid. Improvements in part-of-speech tagging with an application to
German. Natural Language Processing Using Very Large Corpora, 11:13–26,
1999.

[48] R.D. Stevens, A.J. Robinson, and C.A. Goble. myGrid: personalised
bioinformatics on the information grid. Bioinformatics-Oxford, 19(1):302–304,
2003.

[49] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC
ontology-semantic web for research communities. Lecture notes in computer
science, 3808:218, 2005.

[50] K. Toutanova and C.D. Manning. Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In EMNLP/VLC 2000, pages 63–70,
2000.

[51] D. Vrandecic, J. Völker, P. Haase, T. Duc, and P. Cimiano. A metamodel
for annotations of ontology elements in OWL-DL. In Proceedings of the 2nd
Workshop on Ontologies and Meta-Modeling. GI Gesellschaft für Informatik,
2006.

[52] Y. Wilks. The Semantic Web: Apotheosis of annotation, but what are its
semantics? IEEE Intelligent Systems, 23(3):41–49, 2008.

52

