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Abstract. Automatic term extraction is the process of identifying
domain-specific terms in a text using automated algorithms and is a
key first step in ontology learning and knowledge graph creation. Large
language models have shown good few-shot capabilities, thus, in this
paper, we present a study to evaluate the few-shot in-context learn-
ing performance of GPT-3.5-Turbo on automatic term extraction. To
benchmark the performance we compare the results with fine-tuning of
a BERT-sized model. We also carry out experiments with count-based
term extractors to assess their applicability to few-shot scenarios. We
quantify prompt sensitivity with experiments to analyze the variation in
performance of large language models across different prompt templates.
Our results show that in-context learning with GPT-3.5-Turbo outper-
forms the BERT-based model and unsupervised count-based methods in
few-shot scenarios.

Keywords: few-shot · automatic term extraction · large language
models

1 Introduction

Terms are linguistic expressions that refer to domain-specific concepts and are
integral to domain-specific languages (Cabré 1999; Fowler 2010). For instance,
Reinforcement Learning with Human Feedback is relevant in natural lan-
guage processing but not psycho-linguistics. Automatic Term Extraction (ATE)
involves extracting terms from text using automated tools, and recent advance-
ments in pre-trained language models (PLMs) have significantly improved ATE
performance (Lang et al., 2021).

Large language models like GPT-3, with billions of parameters, excel in zero-
shot and few-shot in-context learning for various NLP tasks (Brown et al., 2020).
Building fully supervised term extraction models is costly and challenging due
to domain-specific variations and the scarcity of annotated data. Large language
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Fig. 1. Main findings: The figure shows F1-scores achieved by fine-tuned XLM-
RoBERTa and GPT-3.5-Turbo averaged over 4 domains namely Heart Failure, Wind
Energy, Equitation and Corruption. In-context learning with GPT-3.5-Turbo substan-
tially outperforms model fine-tuning for 5, 15, 25 and 30 samples.

models, with extensive parameters and pre-training datasets, potentially alle-
viate the need for large annotated datasets by performing few-shot in-context
ATE. To validate this, we compare large language models in few-shot settings
with a BERT-sized XLM-RoBERTa model and unsupervised count-based term
extraction methods, adhering to the truly few-shot setting standard (Perez et
al., 2021).

To quantify this impact of prompt structure on task performance in the case
of ATE we carry out experiments with 8 different prompt templates. Secondly, in
recent studies, multiple in-context sample selection strategies have been explored
(Rubin et al., 2022; Liu et al., 2022). In our experiments, we follow the k-nearest
sample retriever method proposed by Liu et al. (2022) and carry out ablations
to demonstrate its effectiveness.

The average F1 scores of fine-tuned XLM-RoBERTa and GPT-3.5-Turbo
over 4 term annotated datasets are shown Fig. 1. We find that in-context learn-
ing with OpenAI’s GPT-3.5-Turbo produces substantially better results as
compared to the fine-tuned XLM-RoBERTa model. Additionally, experiments
with unsupervised count-based term extractors demonstrate their ineffectiveness
when compared to in-context learning in few-shot scenarios.

2 Related Work

Automatic Term Extraction. Machine learning-based methods aimed at
identifying terms on the basis of underlying patterns in the occurrence context
relax the frequency hypothesis with algorithms like random forests (Rigouts Ter-
ryn et al., 2021) and XGBoost (Hazem et al., 2022) demonstrating good task
performance. The performance has been further improved by deep learning mod-
els such as XLM-RoBERTa (Lang et al., 2021) and mBERT (Hazem et al., 2022)
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across languages and domains. Lang et al. (2021) show that formulating term
extraction as a sequence labelling problem yields better results as compared to
span classification or a sequence-to-sequence problem when fine-tuning XLM-
RoBERTa.

Truly Few-Shot Learning. Perez et al. (2021) introduced the paradigm of
truly few-shot learning where they argue that previous work which uses large
validation sets for model and prompt selection overestimates the performance
of pre-trained language models in few-shot scenarios. This paradigm has been
followed by works focused on few-shot problems (Gutierrez et al., 2022).

Prompt Design. To apply large language models to ATE we formulate it as
a language generation problem aided by prompts designed for this task. Our
prompt templates are motivated by previous work which focuses on reformulat-
ing various natural language processing tasks as generation problems. In par-
ticular, our prompt design is inspired by work done by Gutierrez et al. (2022)
where they pose relation extraction as a language generation problem. They
break down each prompt into 2 main components: the task instruction and the
retriever message. For more details on their prompt design, we refer the reader
to their paper.

Large Language Models. In recent years there has been significant progress
in the development of large language models (LLMs) (Naveed et al., 2023).
These highly parameterized models have been able to achieve state-of-the-art
performance on a wide variety of natural language processing tasks (Tang et
al., 2023; Wadhwa et al., 2023). Inspired by the good performance of GPT-3.5-
Turbo1 model on information extraction tasks such as named entity recognition
(Wang et al., 2023; Zhang et al., 2024) we carry out experiments to assess its
applicability to few-shot automatic term extraction.

3 Methodology

We undertake a study to evaluate few-shot in-context learning performance of
large language models2 on term extraction. To benchmark these results we com-
pare them against full model fine-tuning of a BERT-sized baseline PLM. The
results are also compared against unsupervised count-based term extraction
methods.

3.1 Validation Protocol

Perez et al. (2021) argue that hyperparameter tuning and prompt selection based
on large validation sets are not truly representative of data-scarce few-shot learn-
ing scenarios. Furthermore, their experiments reveal that model selection deci-
sions made on the basis of larger validation sets overestimate few-shot learning

1 https://platform.openai.com/docs/models.
2 Here we refer to models with more than 1B parameters as large language models.

https://platform.openai.com/docs/models
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Fig. 2. Overall flow for large language model in-context learning for ATE in the left.
The prompt structure is inspired by Gutierrez et al. (2022) and a prompt template used
in our experiments with one-shot in-context learning has been shown on the right. The
different segments of the prompt are indicated by different colours: task instruction in
green (underlined) and red for the retrieval messages (italicized). The current input
text and the terms output by the large language model are highlighted. (Color figure
online)

performance. To avoid overestimation we follow their proposed truly few-shot
setting and optimize the hyperparameters by validating on a validation set of 10
examples.

3.2 Large Language Model Evaluation

In this section, we discuss how we reformulate ATE for few-shot in-context learn-
ing. We then discuss the structure of prompts used for inference and also the
approach we use for retrieval of in-context examples.

Task Formulation. In order to use large language models for ATE, we refor-
mulate it as a language generation task. We tokenize the domain-specific corpus
into sentences and transform each sentence into a prompt. The overall flow from
the input sentence to the extracted terms is illustrated in Fig. 2.

Prompt Design. As shown by Sclar et al. (2023), in few-shot scenarios small
changes to the prompt design have a significant impact on the performance
of the large language models. To quantify the variation in performance across
different prompts we carry out experiments with 8 different prompt templates.
The basic structure of all our prompt templates is motivated by Gutierrez et
al. (2022). Each prompt template comprises a task-specific instruction and a
retriever message. We categorize the templates into two types: in Type I, we
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Table 1. Prompt Templates

Prompt Type No. Template

Type I 1. Identify the terms in the following text. Input: Output:

2. Identify the terms in the following text. Text: Terminology:

3. Extract the terms from the following text. Input: Output:

4. Extract the terms from the following text. Text: Terminology:

Type II 5. Find the domain-specific terms in the following text. Input: Output:

6. Find the domain-specific terms in the following text. Text: Terminology:

7. Identify the words or phrases that are relevant to the underlying domain of the input text. Input: Output:

8. Identify the words or phrases that are relevant to the underlying domain of the input text. Text: Terminology:

include the templates with simple task instructions namely: Identify the terms
in the following text. and Extract the terms in the following text. whereas in
Type II the task instructions are more detailed such as Identify the words or
phrases that are relevant to the underlying domain of the input text. and Find the
domain-specific terms in the following text. We hope to analyze the sensitivity
of LLMs to word-level changes in the prompt by quantifying the variation in
performance within Type I. Furthermore, to analyze performance as a function
of complexity of task instruction we compare the average F1 scores between
Type I and Type II. For more details on individual prompt templates, we refer
the reader to Table 1.

Evaluation. We evaluate the performance of the large language models in a
few-shot in-context setting. Each prompt consists of the instruction, retriever
message, input sentence and a fixed number of labelled examples selected by the
retriever module to allow in-context learning. To better understand the impact
of in-context samples on performance we carry out experiments with varying
numbers of such samples in the prompt. An example of a one-shot prompt for a
specific prompt template is shown in Fig. 2.

To control hallucination we post-process the outputs and remove any gener-
ated term which has no match with any span of text in the input.

Retriever Module. The inclusion of in-context samples in the prompt has
been shown to improve performance on downstream tasks (Li and Qiu 2023).
We follow the k-nearest neighbour sample selection method proposed by Liu et al.
(2022) for our retriever module. The training set is used to select k most similar
examples for each test sample. We carried out initial experiments with multilin-
gual sentence transformers3 and RoBERTa-large on a set of 250 randomly chosen
examples. The findings of these initial experiments show that using RoBERTa-
large for in-context demonstration retrieval yields better results. Therefore, we
use RoBERTa-large for in-context demonstration retrieval in our experiments.

3 Specifically we used paraphrase-MiniLM-L6-v2.
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Table 2. Dataset statistics: The number of sentences and terms in each domain.

Heart Failure Train Test Valid

Sentences 158 1427 43

Terms 260 1725 91

Corruption Train Test Valid

Sentences 301 171 110

Terms 186 98 64

Equitation Train Test Valid

Sentences 827 856 180

Terms 577 393 129

Wind Energy Train Test Valid

Sentences 834 154 60

Terms 623 104 92

4 Experiments

4.1 Datasets

The ACTER dataset (Rigouts Terryn et al., 2020) contains term annotated
data across 4 domains and 3 languages namely English, French and Dutch. The
4 domains are unrelated to each other and by carrying out experiments on all of
them we hope to establish the applicability of large language models for few-shot
term extraction to various domains. In this paper, we have limited the exper-
iments to the English dataset. The dataset statistics can be found in Table 2.
Here we provide a brief description of the domain corpora:

Heart Failure. This corpus is a collection of abstracts about heart failure col-
lected on the basis of titles crawled for previous research (Hoste et al., 2019) on
medical terminology extraction.

Equitation. The texts in the equitation corpus were collected manually from
magazines and blogs and focus specifically on horseback riding.

Corruption. The texts in the corruption corpus belong to the juridical domain.
These documents were manually collected from the EU, United Nations and
Transparency International and contain legal documents about corruption poli-
cies, newspapers and Wikipedia articles.

Wind Energy. The documents in the wind energy corpus were collected from
TTC corpus (Clouet et al., 2012).
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4.2 Baselines

Unsupervised Term Extraction. Count-based term extractors rely on a pos-
itive correlation between termhood and the frequency of occurrence in a domain
corpus. Since these methods are unsupervised, we use them as baselines for
few-shot term extraction. In our experiments, we use C-Value (Frantzi and Ana-
niadou, 1996) and ComboBasic (Astrakhantsev et al., 2015) to benchmark the
performance of large language models.

Fine-Tuning. Recent work on fine-tuning PLMs for ATE has reported good
results by posing term extraction as a sequence tagging problem (Lang et al.,
2021). Following this paradigm as the standard we fine-tune XLM-RoBERTa-
base as the baseline PLM to identify terms using a BIO tagging scheme (Carreras
et al., 2003). Hyperparameters such as learning rate, batch size, gradient accu-
mulation steps, and warm-up ratio are optimized using tree-structured Parzen
estimator4 on the validation set of 10 examples mentioned above.

4.3 Implementation

To quantify variation in performance with a variation in the number of samples
we carry out experiments with 5, 15, 25 and 30 training examples. GPT-3.5-
Turbo has a maximum input context length of 4k tokens, to avoid errors due to
exceeding the token limit in the input prompt we limit our experiments to 30
samples. 10 validation samples are used to simulate a truly few-shot setting. In
order to limit costs, the models are evaluated on a test set of 150 samples. We
use the Hugging Face library5 for fine-tuning XLM-RoBERTa on our training
set. We use PyATE library6 for the implementation of the unsupervised count-
based term extractors. OpenAI’s open-source library is used to query GPT-3.5-
Turbo7. To quantify the sensitivity of performance to various prompt templates
we carry out all our experiments with the large language models using 8 dif-
ferent prompts. Hyperparameters are optimized using the Optuna library8 over
20 trial runs with the tree-structured Parzen estimator. To provide robust and
convincing conclusions, we run all experiments (including ablation studies) with
5 different seeds and report all results as the mean and standard deviation of
all experiments. These measures are computed using Numpy library9. We used
random seeds 1, 2, 3, 4 and 5 in our experiments. Furthermore, to ensure repro-
ducibility we ensure that all the libraries/frameworks used in our experiments
are open-source.

4 https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.
samplers.TPESampler.html.

5 https://huggingface.co/.
6 https://github.com/kevinlu1248/pyate.
7 https://github.com/openai/openai-python.
8 https://optuna.org/.
9 https://numpy.org/.

https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
https://huggingface.co/
https://github.com/kevinlu1248/pyate
https://github.com/openai/openai-python
https://optuna.org/
https://numpy.org/
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Table 3. The performance of fine-tuning XLM-RoBERTa with and without LoRA on
K = 5, 15, 25 and 30 samples compared with unsupervised count-based term extrac-
tors and in-context learning with GPT-3.5-Turbo. This table illustrates the mean and
standard deviation (in the format meanstd) of precision, recall and F1-scores over all
the random seeds. The unsupervised methods are deterministic, they do not exhibit
any variation across different runs therefore std = 0 has not been illustrated in the
table. For GPT-3.5-Turbo the mean and standard deviation of F1-scores over all the
random seeds and all the prompt templates have been illustrated.

5-shot

Heart Failure Corruption Wind Energy Equitation

Precision/Recall/F1 Precision/Recall/F1 Precision/Recall/F1 Precision/Recall/F1

GPT-3.5-Turbo 47.81.6/61.51.7/53.70.9 18.20.6/69.81.5/28.90.9 19.50.9/71.91.1/30.71.0 35.61.9/76.60.4/48.61.8

XLM-R 10.37.7/13.015.0/10.08.6 26.19.1/10.32.2/14.12.0 19.01.9/30.56.8/23.12.0 33.25.5/45.08.0/37.32.4

15-shot

GPT-3.5-Turbo 49.82.0/62.71.4/55.51.0 19.90.9/70.50.9/31.11.2 21.40.4/73.41.3/33.10.4 35.81.1/76.10.3/48.71.0

XLM-R 59.03.3/24.25.4/33.94.8 31.66.5/20.63.9/24.11.9 24.92.6/40.54.3/30.72.5 36.43.1/46.52.3/40.72.3

25-shot

GPT-3.5-Turbo 51.11.5/63.40.9/56.61.0 19.91.0/67.01.5/30.61.3 21.21.3/71.31.8/32.71.5 36.51.4/74.60.5/49.01.3

XLM-R 60.41.9/41.42.7/49.01.6 33.37.5/23.87.3/26.13.0 29.22.4/50.58.3/36.51.0 46.44.4/42.05.7/43.62.8

30-shot

GPT-3.5-Turbo 51.61.7/64.50.8/57.30.8 21.10.5/68.02.9/32.20.8 21.50.5/67.91.9/32.70.6 36.80.9/75.31.9/49.40.8

XLM-R 62.52.3/41.45.2/49.54.5 31.65.7/30.73.0/30.71.5 32.83.3/32.36.2/32.26.7 48.74.7/48.67.5/48.24.7

Unsupervised Methods

ComboBasic 5.5/38.2/9.6 2.3/36.5/4.3 4.7/34.0/8.2 1.8/58.1/3.6

CValue 5.4/37.7/9.5 2.2/35.5/4.2 4.6/33.8/8.2 1.8/57.1/3.6

5 Results and Discussion

5.1 Main Results

Our main experimental results can be found in Table 3. It is important to note
that GPT-3.5-Turbo outperforms all other models in almost all cases on the
F1-score, often by large margins in the range of approximately 3–45%. On the
heart failure domain, GPT-3.5-Turbo has the best performance and achieves an
average F1-score of 55.7% over all sample sizes. We also note that count-based
term extractors are substantially outperformed by XLM-RoBERTa across all the
domains, this is in line with previous results reported by Lang et al. (2021). This
observation indicates that in few-shot scenarios in-context learning with LLMs
is a better alternative than unsupervised count-based extractors.

While the overall better performance of the GPT model as compared to
other models can be explained by its larger size and diverse pre-training corpus,
the relatively lower performance on Corruption, Wind Energy and Equitation
where the Precision drops by about 12–30% on average as compared to the Heart
Failure domain indicates lack of domain specificity in the extracted terms. This
drop in specificity is accompanied by substantial improvements in coverage on
gold standard terms shown by the high recall values in the range of 70–76% on
average across these domains. This observation indicates a significant number
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Table 4. The average F1-scores of prompt templates calculated the GPT-3.5-Turbo
model.

Corruption Heart Failure Wind Energy Equitation

Type I Template 1 30.1 55.4 32.8 48.3

Template 2 30.2 55.5 32.8 48.2

Template 3 29.7 54.9 31.3 48.0

Template 4 29.7 54.8 31.2 48.0

Average 29.9 55.1 32.0 48.1

Type II Template 5 31.2 57.0 33.2 50.8

Template 6 31.4 56.9 33.2 50.9

Template 7 31.6 55.8 31.8 48.6

Template 8 31.6 56.0 31.9 48.5

Average 31.4 55.6 32.5 49.7

of false positives in the extracted terms; we discuss this point in more detail in
Sect. 5.4.

Diving into the finer details of XLM-RoBERTa fine-tuning, it is important to
note that it has reasonable performance considering that the training set consists
of a very small number of samples. Amongst all the domains XLM-RoBERTa has
the best performance on Heart Failure, this can be attributed to regular term
structure in this domain e.g. the suffixes ‘-tion’, ‘-ophy’ are common to many
terms. Furthermore, the relatively higher values for ComboBasic on the Heart
Failure domain suggest lexical overlap amongst the terms in this domain. Simi-
larly, the high lexical diversity in term structures across the other domains can
be attributed to the lower performances. In terms of coverage, XLM-RoBERTa
behaves differently than GPT-3.5-Turbo and has high precision but low recall
across the domains. The fact that GPT-3.5-Turbo makes predictions on the
basis of knowledge acquired through a large pre-training corpus whereas XLM-
RoBERTa is inherently regularized through task-specific fine-tuning can be used
to explain this phenomenon.

We see an average improvement of around 2% for GPT-3.5-Turbo as the
training set grows from 5 to 30 samples. This is important and shows that
increasing the number of in-context samples arbitrarily does not guarantee large
improvements in performance. However, as expected XLM-RoBERTa full-model
fine-tuning exhibits large monotonic improvements in the F1-score going up to
50% with increasing sample size. Furthermore, as can be seen from the results
in Table 3, for 30 samples XLM-RoBERTa converges on the GPT model.

5.2 Prompt Sensitivity

As described in Sect. 3.2 we categorize the templates into two categories: Type
I with a simple task instruction and Type II with a detailed description of the
task. The average score of each template is shown in Table 4. As can be seen
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Table 5. Average F1-score of kNN-based demonstration retrieval compared to random
demonstration selection for in-context learning.

Corruption Heart Failure Wind Energy Equitation

kNN 30.7 55.8 32.3 48.9

Random 28.7 54.9 30.2 48.0

from the results the performance of Type II templates is better than Type I on
average. Furthermore, the change of retriever message has negligible impact on
task performance (≈ 0–1%).

This result is not surprising as the task instruction Find the domain-specific
terms in the following text. in templates 5 and 6 and the task instruction Identify
the words or phrases that are relevant to the underlying domain of the input
text. in templates 7 and 8 describe the term extraction task in greater detail.
A comparison with templates 1–2 with templates 3–4 shows that replacement
of the word Identify with Extract leads to a slight degradation in performance.
Thus indicating that although performance is sensitive to word-level changes, the
impact may not be significant. Overall, the change in the prompt template did
not lead to a large variation in the task performance; detailed task instructions
had slightly better performance along expected lines.

5.3 Ablation

In Table 5, we present ablation studies demonstrating the effectiveness of the
kNN-based demonstration selection used in our experiments. Experiments are
carried out with randomly selected in-context samples instead of semantically
similar samples selected through kNN for each test input without changing other
aspects of the experimental setup. Comparison of the random demonstration
retriever with kNN-based retriever module shows the better performance of kNN-
based in-context sample selection strategy.

5.4 Error Analysis

As discussed in Sect. 5.1, GPT-3.5-Turbo suffers from the problem of high recall
whereas full-model fine-tuning of XLM-RoBERTa leads to lower recall values on
all four domains. In this section, we carry out a qualitative analysis of false posi-
tive and false negative predictions made by the models. We find that both models
are good at identifying acronyms such as LVEF and CRT. Lang et al. (2021)
make the same observation in their experiments as well. They attribute this to
the presence of a substantial number of acronyms in the training dataset. How-
ever, the ability of GPT-3.5-Turbo to identify acronyms without task-specific
adaptation is notable. A comparison of the terms generated by GPT-3.5-Turbo
across the domains shows that while the predictions for Heart Failure are highly
specific such as biventricular and peak oxygen uptake, for the other domains the
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Fig. 3. Variation in average F1-scores of GPT-3.5-Turbo and full-model fine-tuned
XLM-RoBERTa for varying sample sizes and term lengths. Overall results for term
lengths ranging from 1 to 5 words are illustrated.

predictions include non-specific expressions. To illustrate, for Wind Energy we
note the presence of a significant number of expressions such as model and weight
which are not domain-specific. Similarly, we observe the presence of non-term
expressions such as diversion, addenda in the output for the Corruption dataset
and expressions like touch, gymnastics for the Equitation domain. These results
indicate that while GPT-3.5-Turbo is good in highly specialized domains like
Heart Failure, on more broader domains like Wind Energy issues of domain-
specificity in the predictions arise. We attribute the lower precision of the GPT-
3.5-Turbo model to the presence of such non-domain expressions in the output.

Experiments were conducted to evaluate the performance of GPT-3.5-Turbo
and fine-tuned XLM-RoBERTa on extracting terms of varying lengths. The
results have been demonstrated in Fig. 3. Both models performed well on shorter
terms (1 to 2 words). However, GPT-3.5-Turbo outperformed XLM-RoBERTa
on longer terms (3 to 5 words), with XLM-RoBERTa showing a performance
gap of about 15% for 4-grams and 5-grams, likely due to the lack of longer terms
in its training set.

6 Conclusion

In this work, we explored the potential of GPT-3.5-Turbo in-context learning
for few-shot term extraction on 4 domains. We showed that for few-shot in-
context term extraction, GPT-3.5-Turbo surpasses XLM-RoBERTa and count-
based term extractors on all domains. Furthermore, the results show that even a
small number of in-context samples leads to good task performance with dimin-
ishing gains as the number of in-context samples increases, this is an important
result with the potential of significantly reducing costs associated with querying
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the large language model. However, it is also important to note that the perfor-
mance of XLM-RoBERTa converges on GPT-3.5-Turbo for 30 samples and while
the input token limit of GPT-3.5-Turbo does not allow us to experiment with
larger sample sizes, extrapolation of results shown here indicate that for larger
sample sizes XLM-RoBERTa outperforms GPT-3.5-Turbo. We also discuss the
performance of GPT-3.5-Turbo across the domains and show that while the
extracted terms have high quality in specialized domains, for broader domains
the performance drops. This is an open question with the potential of build-
ing a framework for term extraction with good performance on a wide range of
domains. Besides posing this question we hope that this work can provide useful
guidance for researchers working on few-shot term extraction.

7 Limitations

Although we have shown the good performance of GPT-3.5-Turbo in-context
learning for term extraction as compared to fine-tuning a BERT-sized PLM for
few-shot term extraction there are several limitations worth discussing. Due to
budgetary constraints, we were limited to a smaller number of prompt templates.
While our experiments show that variation in the prompt template doesn’t cause
significant variation in task performance, a wider search space can lead to better
performance. To simulate a truly few-shot setting we have used a validation
set of 10 samples, it is unclear if using a larger validation set at the cost of
compromising the few-shot setting would reduce the gap in performance between
XLM-RoBERTa and GPT-3.5-Turbo.set of prompt styles. Furthermore, here we
have carried out experiments with GPT-3.5-Turbo, it is unclear whether in-
context learning with other large language models will lead to an improvement
in performance. We use kNN-based retriever module for selecting the in-context
demonstrations, a retriever module better suited for selecting demonstrations
for term extraction might lead to better results.
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